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Abstract—With regard to social network analysis, we con-
centrate on two widely-accepted building blocks: community
detection and graph drawing. Although community detection and
graph drawing have been studied separately, they have a great
commonality, which means that it is possible to advance one
field using the techniques of the other. In this paper, we propose
a novel community detection algorithm for undirected graphs,
called BlackHole, by importing a geometric embedding technique
from graph drawing. Our proposed algorithm transforms the
vertices of a graph to a set of points on a low-dimensional space
whose coordinates are determined by a variant of graph drawing
algorithms, following the overall procedure of spectral clustering.
The set of points are then clustered using a conventional clustering
algorithm to form communities. Our primary contribution is
to prove that a common idea in graph drawing, which is
characterized by consideration of repulsive forces in addition to
attractive forces, improves the clusterability of an embedding.
As a result, our algorithm has the advantages of being robust
especially when the community structure is not easily detectable.
Through extensive experiments, we have shown that BlackHole
achieves the accuracy higher than or comparable to the state-of-
the-art algorithms.

I. INTRODUCTION

Social network analysis is currently one of the most
attractive issues in data mining and machine learning. More
people are getting involved in social networks, and these social
networks, in turn, become more complicated. The activities
of the users on social networking services provide us with
important clues to their real-world behaviors and relationships
with others. Accordingly, social network analysis has emerged
as a key technique in various disciplines including sociology,
economics, epidemiology, politics, and psychology [1], [2], [3].
A lot of theories, models, and methods have been actively
developed for this purpose. Among them, we would like to
concentrate on two widely-accepted building blocks: commu-
nity detection and graph drawing.

Community detection is a procedure of finding the com-
munity structure, with many edges joining vertices of the
same community and comparatively few edges joining vertices
of different communities [1]. Thus, communities are regarded
as groups of vertices which likely share common properties
and/or play similar roles within the graph. Graph drawing is a
procedure of deriving a pictorial representation of the vertices
and edges of a graph [4]. It often produces a node-link diagram
in which vertices are represented as disks and edges as line
segments or curves in the 2-dimensional space. Several quality
measures have been defined for graph drawings, in an attempt
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to find an effective means of evaluating their aesthetics and
usability.

Community detection and graph drawing have been parallel
universes. Although it looks evident that these two problems
have different objectives, they in fact have a great commonal-
ity. Graph drawing typically locates adjacent (i.e., connected)
vertices close with each other, to minimize edge crossings
and eventually to optimize the aesthetic factor. As a result,
a set of densely-connected vertices are gathered together,
thereby naturally composing a community (i.e., cluster) in
the 2-dimensional space. Motivated by this commonality, we
contend that several features inherent in graph drawing can
advance community detection.

In this paper, we propose a novel community detection
algorithm for undirected graphs, by importing a geometric
embedding technique from graph drawing. Toward this goal,
we develop a new model for graph drawing, which is tuned for
community detection, not for visualization. Figure 1 shows the
drawings of a graph by a force-directed layout model [5] and
our new model respectively. In Figure 1(a), the vertices do not
overlap with each other to consider visualization requirements.
In Figure 1(b), by simply ignoring visualization requirements,
the vertices of the same community are located at (almost)
the same position. A position represents multiple vertices that
possibly belong to the same community. Also, unlike a con-
ventional model, we do not have to insist on a 2-dimensional
space for layout. We note that, in Figure 1, our new model can
reveal a community structure even for a complicated graph that
a conventional model cannot.
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(a) LinLog model. (b) Our model.

Fig. 1: Difference between a conventional drawing model and
our model.!

Our community detection algorithm, which we call Black-
Hole, mainly consists of two phases in Figure 2. In the first
phase, every vertex in a graph is mapped to a point in a low-
dimensional space. Here, multiple points (i.e., vertices) tend
to collapse into a single position just like the black hole,

IThe edges of the graph are omitted in the figure.
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and this is why we named our algorithm BlackHole. In the
second phase, the positions are grouped to form communities
using conventional clustering algorithms such as k-means and
DBSCAN [6]. Thus, a community is comprised of the vertices
that are mapped to either the same position or a set of very
close positions.
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Fig. 2: The overall procedure of our algorithm BlackHole.

What is the advantage of BlackHole over existing commu-
nity detection algorithms? BlackHole achieves the accuracy
better than or comparable to the state-of-the-art algorithms
such as Infomap [7], label propagation[8], Louvain[9], and
spectral clustering [10]. This advantage becomes prominent
when the community structure is not easily detectable. The
mixing parameter is defined as the fraction of edges that are
between different communities [11]. The higher the mixing
parameter is, the less detectable the community structure is.
The accuracy of the existing algorithms degrades drastically
when the mixing parameter exceeds 0.5[11], [12]. One of the
main reasons for this poor accuracy is that most of the vertices
are inclined to be wrongly assigned to very few gigantic
communities [13]. BlackHole is shown to be much more robust
to high mixing than the existing algorithms.

This advantage is important since high mixing occurs
frequently as networks become more complicated, including in
these two cases. First, the vertices lying at the boundary among
communities play a role of mediation of the transition between
communities [1]. In particular, when different communities
share a commonality and cooperate with each other, the bound-
aries become more blurry. Such vertices near the boundaries
tend to have more edges to other communities than to their
own communities, thus causing high mixing. Second, there is
a multi-aspect nature of interactions in network systems since
vertices might be connected via multiple types of relationships
at the same time [14]. Sometimes the aspects are invisible, and
multiple types of relationships are aggregated and revealed in a
single network. Then, the relationships irrelevant to community
membership contribute to high mixing.

BlackHole is theoretically shown to be more robust to
high mixing than two popular embedding-based community
detection algorithms—spectral clustering and modularity op-
timization. BlackHole and spectral clustering are commonly
translated to a divergence minimization problem [15] in which
the main difference is the type of divergence determined by the
way of handling repulsive forces. On the other hand, Black-
Hole and modularity optimization are commonly translated to
a layout optimization problem in which the main difference is
the discreteness of dissimilarity. These two differences enable
us to achieve higher clusterability compared with the two
algorithms. We empirically prove our claim also for other
popular algorithms.
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Overall, the contributions of this paper are summarized as
follows.

1. We propose a novel paradigm for community detection in-
spired by graph drawing, thereby developing the algorithm
BlackHole. The source code is available at https://github.
com/jaegil/BlackHole. To the best of our knowledge, our
work is the first attempt to show that graph drawing is
practically usable for community detection.

. We theoretically investigate the relationships between
BlackHole and two embedding-based algorithms. The ro-
bustness of BlackHole to high mixing is interpreted using
the relationships discovered.

. We empirically show that BlackHole achieves higher ac-
curacy than the state-of-the-art algorithms especially when
a graph has high mixing of communities.

The rest of this paper is organized as follows. Section II
reviews graph drawing and embedding. Section III proposes
our community detection algorithm. Section IV formalizes the
strength of our algorithm. Section V presents the evaluation
results. Section VI summarizes related work. Finally, Section

VII concludes this study.
II. PRELIMINARIES

In this section, we explain the basics of graph drawing
and embedding. Before proceeding, we summarize the notation
used throughout this paper in Table I.

TABLE I: Summary of the notation.

[ Notation | Description
g an undirected weighted graph
dy the degree of a vertex v
Wy a weight of a vertex v (e.g., dy)
Wy, 0 a weight of an edge {u, v}
p(v) a position of a vertex v by a layout p
E(plG) the energy with a layout p for G
a,r the parameters of the (a, r)-energy model
" the mixing parameter

A. Graph Drawing

For a given graph G = (V, E), graph drawing (or graph
layout) is the problem of finding a set of positions (i.e.,
locations) of the vertices and drawing a node-link diagram that
visualizes the graph structure effectively. A layout p: V — S
is a function that maps from a set of vertices to a set of
corresponding vertex positions in a drawing space S, e.g.,
S = R2. Graphs drawn with existing algorithms tend to
be aesthetically pleasing, exhibit symmetries, and produce
crossing-free layouts based on their strategies. Among many
approaches, we adopt force-directed layout algorithms owing
to their simplicity and intuitiveness [4].

Those algorithms take both attractive and repulsive forces
into account [16], [17], [5]. The former is seen as the attractive
force between adjacent vertices connected via a spring, and
the latter as the repulsive force between vertices (particles)
electrically charged. Thus, adjacent vertices attract, which is
inclined to group densely-connected vertices, and all pairs
of vertices repulse, which is inclined to separate sparsely-
connected vertices.

Formally, for a layout p and two vertices u, v (u # v), the
attractive force exerted on u by v is denoted by Eq. (1), and
the repulsive force exerted on u by v is denoted by Eq. (2) [18].



The strengths of the forces are often chosen to be proportional
to some power of the distance.

Attractive force: wy||p(u) —p(v)H“p(u)p(v; (1)

Repulsive force: wywy||p(u) —p(v)Hrp(v)p(u; 2)
Here, ||p(u) — p(v)]|| is the distance between w and v, and
(u)p( 3

D v) is a unit-vector pointing from p(u) to p(v).

The algorithms find an equilibrium state that the net force
on each vertex becomes zero. This problem is equivalent to
minimize the energy in Definition 1. The first term represents
the sum of the attractive energies for every two adjacent ver-
tices, and the second term represents the sum of the repulsive
energies for every two vertices. Then, the energy is defined by
subtracting the repulsive energies from the attractive energies.
Graph drawing now translates to an optimization problem with
the objective function Eq. (3) over all possible p’s.

Definition 1: [18] The energy £(p|G) of a layout p for a
graph G = (V, E) is given by Eq. (3).

E(plG) = Z Ip(u) — p(v)|ett

{uv}eE a+l (3)
> lp(u) = p(o)|"*
{u,w}evV® r+l1

Noack [18] has studied a general framework for the force-
directed layout. The energy model in Eq. (3) is called the
(a,r)-energy model. This model covers traditionally well-
known graph drawing algorithms: the Fruchterman-Reingold

algorithm [17] with @ = 2, = —1, the Davidson-Harel
algorithm [16] with @ = 1,7 = —3, the LinLog algorithm [5]
with @ = 0,7 = —1, and so on. Note that the algorithms have

different characteristics depending on the values of the two
parameters a and 7. In Section III-B, we choose the values of
a and 7 so as to fulfill our purposes.

B. Embedding

An embedding is in general a map from a given space
into another space. In order to explore the structure of a
high-dimensional data set, embedding algorithms are used
to determine a low-dimensional representation that preserves
some interesting properties of the underlying data structure.
The existing algorithms usually attempt to preserve global
geometry or local geometry of a given data set.

Notably, neighbor embedding algorithms have been widely
used for dimensionality reduction [15]. They find an embed-
ding such that, for a given set of /N data objects, the neighbors
in the r-dimensional input space are approximately preserved
in the s-dimensional output space (typically, s < r). More for-
mally, >°  D(x,||y.) is minimized for a certain dissimilarity
D7 where Xu = (Iu,v)v:l,...,N and Yu = (yu,v)v:l,...,N are
probability distributions. Here, x,, , and ¥, , are proportional
to the probability that an object v is a neighbor of an
object u before and after embedding respectively. Spectral
clustering [19], [20], [10], which is a well-known algorithm
for community detection in graphs, is basically neighbor
embedding with the edge weight w,, , for a pair of vertices
being considered as x, .

The information divergence (or simply divergence) is a
measure of dissimilarity between two probability distributions.
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Among several families of divergences, the [-divergence in
Definition 2 is designed to work well for clustering [21], in
which we are interested. It covers most commonly-used diver-
gences: Itakura-Saito (IS) divergence with § — 0, Kullback-
Leibler (KL) divergence with 8 — 1, and Euclidean distance
with g = 2.

Definition 2: [21] The 3-divergence Dg(x,||y.) between
two probability distributions x,, and y,, is given by Eq. (4).

Dg(xullyw) = Zdﬁ(fu,ku,v)? where @)
1)

1 T I 51
ﬁ(ﬂ _ + (5 1)yu,'u ﬁwu,’vyu,v )

Yang et al. [15] proved that several neighbor embedding
algorithms equivalently optimize the [-divergence. Variants
of spectral clustering are equivalent to KL-divergence mini-
mization, and the LinLog model is equivalent to IS-divergence
minimization. In Section IV-A, we show that BlackHole can
be unified into this framework of using the /-divergence, in
order to formally investigate the connections between neighbor
embedding algorithms and ours.

I11.
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THE ALGORITHM BLACKHOLE

A. Community Detection

1) Problem Setting: The goal of community detection in
graphs is to identify modules by only using the information
encoded in the graph topology [1]. BlackHole performs this
task, as described in Definition 3. It says that we discover
disjoint communities.> In addition, the vertices are allowed
not to be members of any community. That is, the union of
the vertices in all communities may not be equivalent to V.

Definition 3: Given a graph G (V, E), community
detection finds the subgroups of vertices. The subgroups are
called communities. Let Cy, Cs, ..., C, be the communi-

ties found. Then, these communities satisfy the constraint,
Ciij:@fOI‘i#j.

2) Overall Procedure: As shown in Figure 2, BlackHole
consists of two phases: layout and clustering, which will be
elaborated in Sections III-B and III-C respectively.

1. Layout phase: We map each vertex to a position in a
low-dimensional space. For simplicity of exposition, we
consider the 2-dimensional Euclidean space, but it can be
generalized to any finite-dimensional space. The optimal
layout is determined according to the (a,r)-energy model.
A position to which multiple vertices are mapped is called
a black hole as in Definition 4. A set of black holes found
are provided to the clustering phase.

Clustering phase: We find the clusters of black holes using
a conventional clustering algorithm. Here, we adopt DB-
SCAN [6], which is one of the most popular density-based
clustering algorithms. A cluster of black holes composes a
community as in Definition 5.

Definition 4: A black hole B; is a position to which a
subset of vertices Vg, C V are mapped.3 The subset Vg,

2Extension for overlapping community detection will be studied in our
future work. Disjoint community detection can be used for overlapping
community detection after transforming the original graph into a link-space
graph, as proposed by Lim et al. [12].

3Practically, we regard a set of positions slightly different as the same by
truncating coordinate values at some digit.



should have at least two vertices (|Vp,| > 2). A vertex does
not belong to multiple black holes (Vi, N Vp, = () for i # j).
The set of all black holes is denoted by 5.

Definition 5: A community C; is the union of the vertices
in a subset of black holes 5; C B. Thatis, C; = |JVp,, VB; €
B;. A black hole does not belong to multiple communities
(B;NBj = 0 for i # j). The set of all communities is denoted
by C.

Algorithm 1 shows the pseudo code of BlackHole, which
is self-explanatory.

Algorithm 1 BlackHole

INPUT: An undirected weighted graph G = (V, E)
OUTPUT: A set of communities C = {C,C,...,C,}

: /[* PHASE I: LAYouUT */

/* Set the parameters for graph drawing */

a <+ —0.95, r + —1; /* Section III-B1 */

/* Execute Algorithm 2 in Section III-B2 */

B + Graph Drawing(G, a,r);

/* PHASE II: CLUSTERING */

/* Set the parameters for density-based clustering */
g, MinPts + Estimate Param(B); /* Section III-C */
/* Execute the DBSCAN algorithm [6] */

10: C' <~ DBSCAN (B, e, MinPts);

11: for each C’ € C' do

12:  /* Compose a community from each cluster */
13: newC « {Vg, | VB; € C}};

14: C+ CU{newC}; ‘

15: end for

16: return C /* a set of communities */

AN

b

3) Example Results: Now, by presenting some example
results, we would like to give the intuition on how BlackHole
works.

Example 1: Figure 3 shows the results for three real-
world* and synthetic networks. The two LFR networks [11]
share the common properties except the mixing parameter
. Here, a small circle represents a black hole, and a color
identifies a community.
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(a) Football. (b) LFR network 1.  (c) LFR network 2.

Fig. 3: The results of BlackHole for three real-world and
synthetic networks (in color).

(a) American college football (115 teams, 12 communities):
Each of twelve black holes exactly forms a community.

(b) LFR network 150,000 vertices, 6 communities, 1 = 0.3):
Each of six black holes exactly forms a community.

(¢) LFR network 2 (50,000 vertices, 6 communities, p = 0.5):
Much more black holes are created in Figure 3(c) than
in Figure 3(b), because the community structure is less

detectable. Nevertheless, the black holes can be clearly
grouped into six clusters, and each cluster exactly corre-
sponds to a community. |

B. Layout Phase

1) Model Selection: Since the (a,r)-energy model is gen-
eral enough to represent many graph drawing models, we have
determined to use it to find the layout suitable for community
detection. The next task is to decide the best values of a and
r. The rationale behind our decision is as follows.

a: We fix the value of a to —0.95. Ideally, the vertices of the
same community should collapse into a single position.
Motivated by black holes in space, the attractive force
should become stronger as connected vertices get closer to
each other. Figure 4 shows the trend of the attractive force
depending on the value of a. When a = —1, the attractive
force exponentially grows as the distance approaches zero.
When larger values are used, it becomes weaker to prevent
vertices from overlapping with each other. In addition, a
cannot be less than or equal to —1[18]. Thus, it is natural
to choose a value slightly larger than —1, which is —0.95.

e

§ —a=-1 o
(] = .
° a=0 e
) --- a=1 i
2 ¢ g
I3 - a= -7
= i - -
= U
< /,/::’

Distance

Fig. 4: Attractive force depending on a.

r: We fix the value of r to —1, since it is a typical value
for many force-directed graph layout algorithms including
the LinLog algorithm, the ForceAtlas algorithm [22], and
the Fruchterman-Reingold algorithm. r is required to be
smaller than a, and distances between communities are less
dependent on densities for large a — r [18]. A big negative
value of r will make a — r large. Thus, it is preferable to
choose a value smaller than ¢ = —0.95 and as large as
possible, which is —1.

We examine the clustering tendency of the black holes
while varying a with r fixed to —1. Since our graph drawing
can be considered as micro clustering [23], the clustering phase
will be less confused as clustering tendency is higher. The
Hopkins statistic measures how far away a data set is from
being uniformly distributed in the data space [24]. The closer
it is to O, the higher the clustering tendency is. We generated a
set of 24 various graphs by changing the parameters of the LFR
benchmark and, for each value of a, measured the Hopkins
statistic of the layout results for the set of the graphs. In the
box plot of Figure 5, the Hopkins statistic tends to decrease
as a approaches —1 and becomes almost 0 when a = —0.95.
Overall, this examination confirms that our model selection
with a = —0.95 and » = —1 is indeed correct for our purposes.

In summary, our objective function for energy minimization
is Eq. (5), which is obtained by substituting a and r in
Eq. (3) with —0.95 and —1 respectively. Here, |p(u) —
p(v)|| 71T /(=1 + 1) is read as In |[p(u) — p(v)| because z~*
is the derivative of In x.

4This data set is available at http://www-personal.umich.edu/~mejn/
netdata/.

SWe tested a = —0.99 as well, but the difference between a = —0.95 and
a = —0.99 was negligible.
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2) Algorithm Descriptions: Algorithm 2 shows the pseudo
code of our graph drawing (layout) algorithm, which places
each vertex on the 2-dimensional space to derive a set of black
holes. The algorithm first distributes the vertices arbitrarily on
a plane (Lines 1~4) and then keeps updating their positions
toward a lower energy (Lines 5~25). More specifically, for
each iterative step, it builds a quadtree of given positions (Lines
7~8), calculates the attractive and repulsive forces exerted on
each vertex using the quadtree (Lines 9~20), and then changes
to the positions having a lower energy (Lines 21~24). In our
actual implementation, we divide Eq. (2) by the total weight
of all vertices to prevent the vertices from spreading too much
on a drawing space (Line 15).

Algorithm 2 Graph Drawing

INPUT: An undirected weighted graph G =
Parameter values of a and r
OUTPUT: A set of black holes B = {p(v)jv € V'}
1: /* Generate initial positions of vertices */
2: for each v € V do
p(v) + Unif([-0.5,0.5] x
end for
/* Minimize the energy by moving positions */
repeat
/* Construct a quadtree for a layout */
T < quadtree({p(v)|v € V});
9:  /* Compute the net force acting on each vertex */
10: for each v € V do

(V. E)

[—0.5,0.5]);

A

11 for each u such that {u,v} € E do

12: 7(“) (v) « 7(“) (v)+ Eq. (1); /* attractive */
13: end for

14: for each leaf R.c T do

15: ) (v) ?(T )+ Eq. (2); /* repulsive */

16: d for

17: ? ) 7 D (v) + 7
18:  end for

19:  /* Choose a step size v that minimizes Eq. (5) */
20: Y < argmingez-iji—o,....6}E (P + v?lg):

21:  /* Determine new positions */

22:  for each v 6 V do

23: p(v) )+ 77

24:  end for

25: until energy not decreasing

26: return B = {p(v)|v € V'} /* the set of black holes */

; /* net force */

Calculating the repulsive energy requires calculating the
distance for every pair of vertices. A straightforward approach
would take O(|V'|?), which is quite expensive. To reduce this
cost, we approximately calculate the repulsive force using a
quadtree (Lines 8, 14~16). A quadtree is a tree data structure
in which each internal node has exactly four children [25].
The quadtree partitions a 2-dimensional space by recursively
subdividing it into four regions or quadrants. Please refer to
Figure 6 in which an example is shown. Then, the positions
in the same quadtree region are approximated by a single
position—their center of mass. That is, all vertices placed in
the same region are regarded as a single vertex having the
sum of their weights as its weight. As a result, the number of
distance calculations reduces significantly, with the distances
calculated still precisely.

Example 2: Figure 6 shows a quadtree with a set of five
clustered positions. The entire region is divided into four
regions R1 ~ R4. The positions are concentrated around the
center of mass, denoted by a solid circle, in R1, R2, and
R4, whereas they are not in R3. Thus, R3 is divided into
four regions once more. While traversing this quadtree, we
include the repulsive force between a given vertex v and the
current region in the total being accumulated. For example, the
repulsive force exerted on v by all vertices in R31 is calculated

collectively at once. O
RS
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Fig. 6: A quadtree for a set of five clustered positions.

The extension for a 3-dimensional space is straightforward,
simply by using the octree instead of the quadtree. However,
for an even higher-dimensional space, the efficiency benefit is
prohibited since the number of children in the index structure
grows exponentially. Thus, it is not preferable to increase
dimensionality unless the benefit in accuracy is significant. We
discuss this issue in detail in Section V-C.

3) Approximation Accuracy: Approximation accuracy is
dependent on how early we stop growing a quadtree (or octree).
For a leaf of a quadtree (or octree), let s be the width of
the region and d be the distance between the center of mass
of the region and that of the entire region. Then, we stop
growing a quadtree (or octree) if s/d < 6 for a certain
threshold 6. If s/d is small enough, the positions in a leaf
can be approximated by their center of mass. Using this
stop condition, the expected computational complexity reduces
from O(|V|?) to O(|V|log|V|) as in Theorem 1.

Theorem 1: The computational complexity of Algorithm
2is O(|E| + |V]log |V]).

Proof: Computation of the attractive forces between ad-
jacent vertices costs O(|E|). As for the repulsive forces, since
we recursively traverse a quadtree (or octree) for each vertex,
the computation takes O(|V| - D) where D is the depth of



the tree. With our stop condition, Salmon [26] proved that, for
the case of almost uniformly distributed particles, the expected
value of D is O(7z log|V]) and it is O(log |V|) when 6 is a
constant. Thus, the computational complexity of calculating
the energy is O(|E| + [V|log|V]). O

Corollary 1: The computational complexity of Black-
Hole (Algorithm 1) is still O(|E| + |V|log |V]).

Proof: The computational complexity of DBSCAN is
known to be O(|V|log|V]) when a spatial index is used [6],
and it is dominated by that of Algorithm 2. 0

There is a tradeoff between approximation accuracy and
speedup. A smaller value of § makes a quadtree (or octree)
deeper. Thus, as 6 becomes smaller, approximation accuracy
gets higher whereas speedup gets lower. The general trend
with varying € for many graphs is described in Figure 7. The
left side indicates speedup, i.e., the ratio of the elapsed time
without approximation to that with approximation. The right
side indicates approximation accuracy (NMI), i.e., how close
an approximate solution is to the real solution. As a result of
balancing these two factors, the value of ¢ is determined to be
1 in our algorithm. This value also conforms to the suggested
value in Barnes and Hut’s work [27].
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Fig. 7: Tradeoff between accuracy and speed.
C. Clustering Phase

Once the positions of black holes are obtained, it becomes
possible to apply a conventional clustering algorithm to the
positions on a low-dimensional space. Among many clustering
algorithms, we have decided to adopt DBSCAN [6], which is
one of the representative density-based clustering algorithms,
since it fulfills our two requirements: the number of clusters
is not known in advance, and the shape of a cluster is not
necessarily circular.

The remaining task is to determine the values of two
parameters: the size of a neighborhood (¢) and the minimum
density of the neighborhood (MinPts). Overall, we follow
the heuristic method suggested by the authors. A reasonable
value of MinPts is around 2Xxdimensionality, so MinPts
is set to be 5 for a 2-dimensional space and 7 for a 3-
dimensional space. Then, to estimate the value of ¢, we (i)
compute the (MinPts — 1)-th shortest distance for each of
sampled vertices, (ii) plot a curve using the distances, sorted
in descending order, (iii) normalize both axes and rotate the
plot by 45 degrees counterclockwise, and (iv) find all local
extreme points in this plot. These local extreme points are
selected as the candidates for €.

IV. FORMALIZATION AND DISCUSSION

In this section, we theoretically explore the relationships
between BlackHole and existing representative algorithms.
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Since BlackHole is based on geometric embedding, we choose
two popular embedding-based algorithms: spectral cluster-
ing [10] and modularity optimization [9]. Then, we translate
our algorithm as well as each of them into a common frame-
work and clarify the advantages of our algorithm over the two
algorithms based on the differences identified.

A. Advantage over Spectral Clustering

1) Incorporation into Divergence Minimization: We first
prove that, in Theorem 2, BlackHole can be incorporated into
a framework of using the §-divergence.

Theorem 2: BlackHole is equivalent to an IS-divergence
minimization problem.

Proof: We translate the objective function of BlackHole
into the form of the IS-divergence in Eq. (6) defined by the

limiting case of Eq. (4) for g — 0.
> Disxullys) = > ( ) - 1) (6)

ueV {u,w}ev(®
Eq. (5) is rewritten as Eq. (7) by the substitutions z,, , = Wy,
and y,., = w,w, |[p(u) — p(v)[| %% n(w,w, /y,.,) is equal
t0 In(Zy,0/Yuv) + In(wyw, /Ty ). AlSO, Wy, w,, and x,,
are constant with respect to an embedding. Then, Eq. (8) is
obtained from Eq. (7), where C' is a constant.

Ty,v

Yu,v

u,v

T (x
Yy

u,v

E(plG) =Y 20w,w, (“”” ~In (“’“’)) ™)
{uptev® Yu,v Yu,v
= Z 20w, w, (Iu’v —1In (%u;) — 1> + C'(8)
{u,v}evV® Yu,o Yu,v

Therefore, with Eqgs. (6) and (8), the layout that minimizes the
energies is equivalent to a graph embedding that minimizes a
weighted sum of IS-divergences. 0

A variant of spectral clustering, called elastic embedding,
that minimizes Eq. (9) is shown to be equivalent to a KL-
divergence minimization problem [15].

Y wuullp(w) = p)|* + A exp(=lp(w) = p(v)l*) ©)

{u,w}ev® {u,w}evV®

The second term causes a difference in the equivalent type of
divergence. One may consider the second term as repulsive
forces. However, its effect is limited since the value of the ex-
ponential function is bounded to 1, and it does not even exist in
original spectral clustering. Thus, the reason why BlackHole
and spectral clustering map to a different divergence is due to
the degree of considering repulsive forces: relatively higher in
BlackHole than in spectral clustering.

2) Effect of a Type of Divergence: Since both BlackHole
and spectral clustering attempt to minimize a specific type
of divergence—the IS-divergence in the former and the KL-
divergence in the latter, we would like to examine the effective-
ness of the divergence with respect to community detection.
However, it is meaningless to directly compare the divergences
of different types since they have different scales. Thus, our
analysis adopts a scaled divergence score, which is the ratio
of the divergence on a target graph to that on a baseline graph.



TABLE II: The notation solely used in Section IV-A.

[ Notation [ Description |
GBases GReal two graphs assumed in the analysis
Drs, Dir, the IS- or KL-divergence
C a set of communities {C1,... Cp}
we, the total weight of the vertices in C';
we,,o; the total edge weight between C'; and C';
X a random variable for variations in we, ¢y
Oc the standard deviation of X

Such baseline and target graphs—denoted by Gp,s. and
GRea respectively—are generated using a simple generative
model that adds edges within a community or across com-
munities as designated by the parameters in Table II. For
ease of theoretical analysis, we assume that we, = we for
1 <i<|C|] and we, ¢, = we,c + Xe where X ~ N(0,07)
for 1 <14 < j <|C|. Here, we and we,c mean the common
values regardless of communities. The only difference between
the two graphs is whether 0. = 0(Gpgse) or 0¢ > 0(GRreal)-
As shown by Figure 8, in unweighted graphs, Gpqsc has
the same number of inter-community edges for every pair of
communities whereas G ., does not. Overall, Gg e i similar
to an Erd6s—Rényi graph[28], which is the most popular
model for random graphs, since an edge between each pair
of vertices across communities has the same probability, and
GReat 1s considered to represent a real-world graph having
diverse weights of inter-community cuts.

Fig. 8: Contrast between Gpuse and Greal-

We now formally define the divergence ratio in Definition
6 for comparison between the two types of divergence. The
denominator represents the standard score of that type of
divergence, and the numerator is based on expectation since
the definition of Gg.,; involves a random variable. The two
input graphs are usually omitted in its notation. Just like the
divergence, the divergence ratio also indicates the difference of
the data structures represented on the original and embedded
spaces. The smaller the divergence ratio is, the more effective
that type of divergence is.

Definition 6: The divergence ratio is defined as Eq. (10).
Here, D represents a specific type of divergence, and D*(G)
is the minimum divergence value given a graph G and the
divergence D.

E[D*(GRrea
R(D; GReals gBase) = [*((gg‘fl))]

D*(G) = argmin ZD Xu||yu)
{yuluevy

, where
(10)

In Theorem 3, using the notion of the divergence ratio,
we prove that the IS-divergence used by BlackHole is more
effective for community detection than the KL-divergence
mainly used by spectral clustering.

Theorem 3: The divergence ratio with the IS-divergence
is smaller than that with the KL-divergence, i.e., DR(Dg) <
DR(Dkr).
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Proof: ~ We rewrite  Djg(Gpase), D7ig(Great)s
D31 (GBase), and D1 (Grear) as the functions of wc, ¢,
Then, they are approximated by the assumptions in Gp,se
and Gpeq- Through mathematical derivations, we have
E[D;S(gReal)D;(L(gBase) - D;s(gBase)D;(L(gReal)] < 0.
It implies that DR(D;s) < DR(Dgp). See Appendix A for
details. ]

Theorem 3 theoretically implies the superiority of Black-
Hole to spectral clustering in the divergence perspective.
Following this theorem, we also show that this superiority
becomes more prominent in the two situations: i) as the
variation of inter-community cuts increases (Corollary 2) and
ii) as the ratio of inter-community cuts, which is proportional
to the mixing parameter g, increases (Corollary 3). It is
worthwhile to note that Corollary 3 states that BlackHole is
robust to high mixing.

Corollary 2: The value of DR(Dyy,)
creases as o (i.e., Var(X.)) increases.

- DR(D[S) in-

Proof: See the proof of Theorem 3 in Appendix A. [J

Corollary 3: The value of DR(Dg;) — DR(D;s) in-
creases as we,c/we increases.

Proof: See the proof of Theorem 3 in Appendix A. [J

B. Advantage over Modularity Optimization

In Theorem 4, we prove that BlackHole is closely re-
lated to the modularity optimization problem that maximizes
modularity defined in Eq. (11). Here, C; and C) are the
communities containing w and v respectively, and J(-) is the
Kronecker delta that returns 1 if C}, = C/ and 0 otherwise.

o= % [ Jaci.cy

{u,w}ev(®)

Wo, Wy

>k Wk

Then, Theorem 4 says that modularity optimization can be
considered as a 0-1 integer problem having a constraint that a
distance between vertices must be either 0 or 1, but BlackHole
is the same problem except the constraint.

QY

Theorem 4: BlackHole is the linear programming relax-
ation of the 0-1 integer problem for modularity optimization.

Proof: Eq. (11) is rewritten as Eq. (12) by changing a
maximization problem to a minimization problem and then
substituting 1 — §(C,, C!) with ||p(u) — p(v)].

Z <wu,v - L ) (1 - 6(07/17 C{)))
{uv}ev® 2k W
Wy Wy
= 3 (o) =)l = 2 o) = p(0)] ) (12
{uw}ev®
lp(u)—p(v)|| is either O or 1 by the definition of the Kronecker

delta, which can be satisfied by placing the vertices of a
community at the same position from those whose pairwise
distances are all 1’s. Thus, by treating ||p(u)—p(v)|| as a binary
variable, modularity optimization is a 0-1 integer problem. If
a = r, Eq. (12) has the same form as Eq. (3) except the
constant factors 1/(a + 1) = 1/(r + 1) which change only
the scaling of the optimal layouts. Since a — 7 in BlackHole,
Eq. (12) also has approximately the same form as our objective



function Eq. (5) in which ||p(u)—p(v)|| can be any nonnegative
value. O

By Theorem 4, since the feasible region of modularity
optimization is a subset of that of BlackHole, the optimal
objective value of modularity optimization is always no better
than that of BlackHole. Our algorithm in general will not
satisfy all integer restrictions since it is preferable to locate
the community positions depending on inter-community cuts.
Therefore, this advantage tends to be more prominent when a
graph has diverse weights of inter-community cuts, which is
often accompanied by high mixing.

V. EXPERIMENTS

We extensively tested the performance of BlackHole using
not only real-world networks in Section V-A but also synthetic
networks in Section V-B. We also tested the dimensionality
effect and scalability of BlackHole in Sections V-C and V-D
respectively. Seven community detection algorithms below
were compared with one another. We included two variations
of our algorithm depending on whether layout was done on a
2-dimensional space or a 3-dimensional space (1~2). The base-
line algorithm (3) is to combine a conventional graph drawing
algorithm (Fruchterman-Reingold) and the k-means algorithm.
The other four algorithms (4~7) have been recognized as the
state-of-the-art community detection algorithms [11].

BlackHole (2D)
BlackHole (3D)
Baseline [29] (based on conventional graph drawing)
Louvain [9] (based on modularity optimization)
Infomap [7]

Label propagation [8] (denoted as LabelProp)
Spectral clustering [19] (used parallel implementation)

} < our proposed algorithm

NNk WD~

In Section IV, we have already discussed spectral clus-
tering and modularity optimization, in comparison to Black-
Hole. Here, we briefly explain the rest of the state-of-the-
art algorithms used in the experiments. In label propagation,
initially all vertices have different community labels, and
each vertex updates its label from its neighbors by majority
vote. Infomap finds a partition of vertices that minimizes the
expected description length of a random walk. During the
random walk, each step is always made to one of its neighbors.
The common characteristic of the two algorithms is that they
consider only the connections to adjacent vertices. Because
each operation refers to only part of a graph, updating the
labels or the partition may be stuck to a local optimum—
an incorrect gigantic community—for the networks with high
mixing.

Our experiments were not tuned for any specific algorithm
or data set. For BlackHole, the two parameters of DBSCAN
were simply configured by the heuristic explained in Section
III-C. In other algorithms, every parameter was set to be the
default value suggested by the authors. One exception was the
number of communities required by k-means (in the baseline
algorithm) and spectral clustering.® We used the exact number

%A popular heuristic is to find the largest gap between successive eigen-
values. However, we did not use the heuristic since it provided us with a
unreasonably low number of communities (e.g., 3 or 4) for the real-world
networks.
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of communities for synthetic networks in order to favor the
other algorithms. However, since we did not know it for
real-world networks, we referred to the answers from either
BlackHole or Louvain and chose a smaller number.

All experiments were conducted on Ubuntu Linux Servers
with one CPU of Intel Xeon Processor E5-2670 and 96 GBytes
of main memory. BlackHole and our heuristic method for
parameter selection were implemented in C/C++ using the
gcc compiler. For all other algorithms, we used the software
packages provided by the authors and igraph library in R which
are publicly available.

A. Real-World Networks

1) Data Sets: Table III lists the real-world networks used in
our experiments. Here, (k) and (C') are the average degree and
the average clustering coefficient respectively. We downloaded
these networks from Stanford Large Network Dataset Collec-
tion” and Pajek Datasets®. Three of them are large enough,
containing more than one million vertices. For the IMDb
network, (C') = 0 since it is a bipartite network with two
types of vertices and hence has no triangles.

TABLE III: Real-world networks used for experiments.

l l V] [E] (k) ()]
DBLP 317,080 1,049,866 6.62 0.632
Amazon 334,863 925,872 5.23 0.397
IMDb 1,324,748 3,792,390 5.73 0.000
Youtube 1,134,890 2,987,624 5.27 0.081
Skitter 1,696,415 11,095,298 13.08 0.258

2) Evaluation Metric: The ground-truth communities of
real-world networks are usually unknown. Since there is no
universal definition of a community, we decide to use a com-
bination of various community-goodness measures introduced
by Yang and Leskovec [30]: internal density (M1), edges inside
(M2), average degree (M3), fraction over median degree (M4),
expansion (MS), cut ratio (M6), conductance (M7), normalized
cut (M8), and flake out degree fraction (M9), i.e., those
highlighted in Figure 9.° Here, an edge between measures
indicates high correlation between them, and thus a group
of the measures share certain characteristics. We note that
the nine measures cover all three groups without a bias to
a specific group. Since these measures are defined for a single
community, for a set of communities, we use a weighted sum
of the values where the weight of a community is the fraction
of the vertices in the community.

M1

InternalDensity M4 M; T
FOMD ] M5 ormalizedCut
Expansion M7 MO
EdgesInside I Conductance Flake-ODF ]
[ er M6
CutRatio
M3

AvgDeg

[ maxoDF AvgODF |

Fig. 9: Correlations of evaluation metrics [30].

We transform a value of a measure to a rank (1~7) by
that measure since M1~M9 have different ranges. To prevent

7http://snap.stanford.edu/data/

8http://vlado.fmf.uni-1j.si/pub/networks/data/

9Modularity is excluded for a fair comparison since Louvain directly
optimizes it.
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Fig. 10: Quality of community detection on real-world networks (in color).

the algorithms from being ranked differently by only a small
difference, we allow them to have the same rank. Let’s say that
a value m; of an algorithm is ranked at r;. Then, the values
miyi(j € {1,2,3,4,5,6}) for other algorithms are ranked at
ri if |m; —m;4;|/miq; < 0.1. These nine ranks are summed
up to make an overall rank. Thus, the smaller the sum of ranks
is, the better the performance is.

3) Results: Figure 10 shows the sum of ranks for each
network data set. A rank by an individual measure is stacked
up in each bar. The algorithm names are indicated by initials:
BlackHole (2D) by “BH2,” BlackHole (3D) by “BH3,” Base-
line by “BL,” Louvain by “LO,” Infomap by “IM,” LabelProp
by “LP,” and Spectral Clustering by “SC.” The sum of ranks
over 40 is omitted in the plot.

It was observed that the two variants of BlackHole—
BH?2 and BH3—had the best and second best cumulative (and
average) ranks in four out of five data sets. In one exception
(Skitter), only BH2 outperformed all other algorithms. Overall,
our algorithm offered excellent performance for all networks,
where the average ranks of BH2 are between 1.44 and 2.00
and those of BH3 are between 1.44 and 2.22. Louvain showed
the performance next best to BlackHole. Spectral clustering,
however, showed poor performance mainly because of a large
number of communities (several hundreds or thousands) in
those networks. We conjecture that the curse of dimension-
ality [31] kicked in, because the dimension of an embedding
space for spectral clustering is as large as the number of
communities. Baseline showed the worst performance since
its layout had a weak tendency of clustering unlike ours.

These networks cover a wide range of clustering coeffi-
cients—from 0.081 (except IMDb) to 0.632. When the clus-
tering coefficient of a network is low, the network is said to
have a weaker community structure. Thus, we conclude that
the performance of BlackHole is stable over the networks
including those with a very low clustering coefficient.

B. Synthetic Networks

1) Data Sets: To more readily vary parameters and observe
their effects, we also use the synthetic networks generated
by the LFR benchmark [11], which allows us to generate the
networks of various properties by controlling its parameters.
The vertex information can be controlled by the number of
vertices (V), the edge information by the average degree ((k))
and the maximum degree (maxK), and the community in-
formation by the maximum community size (maxzC') and the
power-law exponent for the community size(t). Here, the
size of a community is the number of the vertices belonging
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to the community; in addition, as ¢ grows, the distribution
of community sizes becomes more right-skewed. Last, the
parameter of our main interest is the mixing parameter (it).

2) Evaluation Metric: In order to evaluate the accuracy of
community detection, we use the Normalized Mutual Informa-
tion (NMI) [32], which is one of the most widely used measures
for community detection. It provides an information-theoretic
measure for comparing different partitioning results and pro-
duces a value between 0 (disagreement) and 1 (agreement). In
the experiments of this section, a higher NMI value indicates
that the communities found by an algorithm match more with
the ground-truth communities.

3) Results: The experiments using LFR benchmark net-
works were systematically conducted in three steps.

1. Varying the mixing and edge information (Figure 11)
2. Varying the community information (Figure 12)
3. Varying the vertex information (Figure 13)

Figure 11 shows the effects of the mixing parameter (1)
when N = 50,000 and (k) = 40. Each plot corresponds to
the results for a different value of maxrK, and we present
the NMI values of the seven algorithms varying the value of
. Since the NMI values of all algorithms except Baseline
are over 0.95 when p < 0.5, we concentrate on the opposite
side of p, which is more difficult to handle. The results are
summarized as follows.

e BlackHole in general achieved the best results. Also,
by Corollary 3, BlackHole won against other algorithms
including spectral clustering when mixing was high. The
accuracy of BlackHole tended to be higher in a 3-
dimensional space than in a 2-dimensional space, but the
gap was not that significant (less than 10%).

Louvain was the second best and competitive until ; was
not so large. This close performance is due to the same
form of the objective functions used by BlackHole and
Louvain. However, when p > 0.65, the NMI value of
Louvain dropped faster than that of BlackHole because
of the limitation of discreteness described in Theorem 4.
Spectral clustering identified meaningful communities. By
Corollary 2, it got worse as max/K increased, because
a large value of maxzK would increase the variation of
degrees and possibly the heterogeneity of mixing.
Infomap and LabelProp failed to identify any community
and hence made a single gigantic community when & > 0.5
or 0.6, as discussed earlier.

Baseline failed to identify any community. Because con-
ventional graph drawing typically spreads the vertices apart
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Fig. 11: Effects of the mixing parameter under various settings when (k) = 40.
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Fig. 12: Effects of the maximum community size.

from each other, it is hard to identify the community
structures in large-scale networks. Song and Bressan[29]
tested this algorithm using very small networks with up to
only 1,000 vertices.

Figure 12 shows the effects of the maximum community
size (maxC) when p = 0.7 and mazK = 200 or 1,000.
Our intention here is to directly control the variation of inter-
community cuts. Increasing maxzC' would increase the varia-
tion of community sizes, thereby making the weights of inter-
community cuts more diverse. As a result, the performances
of all algorithms degraded as maxC' increased. Furthermore, a
higher value of max K is likely to boost such variation. Thus,
by Corollary 2, spectral clustering became worse in Figure
12(b) than in Figure 12(a). Overall, BlackHole was shown to
be robust to high variations in considering that its NMI values
were always highest and its decreasing rate was slower than
or comparable to that of other algorithms.

Figure 13 shows the effects of the number of vertices (V)
when ¢ = 0.7 and £ = 1 or 2. Our intention here is to
expand a graph while preserving the other properties of the
graph, in order to focus on the effects of N. For this purpose,
we maintained the average number of communities by setting
maxC' to be proportional to N. All algorithms were shown
to be rather insensitive to N. In comparison between Figures
13(a) and 13(b), the overall trend was not affected when the
skewness of community sizes intensified. As an exception,
Louvain performed better in Figure 13(b) than in Figure 13(a),
because it handled well small-sized communities prevalent
with ¢ = 2. Overall, the NMI values of BlackHole were kept
to be quite high (around 0.8) for the entire range of V.

C. Dimensionality

To investigate the effect of the dimensionality on Black-
Hole, we repeated the experiments for Figure 11 while in-
creasing the number of dimensions for layout until 10. We
measured efficiency and accuracy for the five networks at
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Fig. 13: Effects of the number of vertices.

the same number of dimensions. The results are reported for
1 =0.65 and p = 0.7 in Figures 14(a) and 14(b) respectively.
The efficiency is the number of vertices processed in a unit
time, ie., (N/elapsed time in minutes), and the accuracy is
measured by the NMI. As the number of dimensions increases,
the accuracy tends to increase and converge at some point. In
Figure 14(a), the accuracy reached the maximum early at the
3-dimension. The efficiency, however, degrades exponentially
because the fan-out of the index structure doubles whenever
the number of dimensions increases by 1. In summary, consid-
ering the trade-off between efficiency and accuracy, we have
empirically found that a relatively small number of dimensions,
e.g., 3, is a reasonable choice unless p > 0.7.
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Fig. 14: Effects of the dimensionality.

D. Scalability

To check the scalability of BlackHole, we generated the
LFR benchmark networks varying the number of vertices
from 20,000 to 1,280,000 with the average degree fixed.
Figure 15 illustrates the running time of BlackHole with the
approximation technique and the other community detection
algorithms. The performance of Baseline was omitted because
it was very close to that of BlackHole (2D). The result shows
that BlackHole has near-linear scalability, thereby confirming
Corollary 1. Though BlackHole is not as fast as Louvain and
LabelProp, it is sufficiently fast in considering that a large-
scale network with over 1 million vertices can be processed



in 3~4 hours on a single machine. In addition, our further
investigation finds that the layout phase spends more than 90%
of the total running time. We leave parallel processing of graph
layout as future work.
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Fig. 15: Near-linear scalability of BlackHole.
VI. RELATED WORK

A. Community Detection

Fortunato [1] and Schaeffer [2] conducted really extensive
survey on community detection. There have been many tech-
niques applied to detect communities: compression-based ap-
proaches such as Infomap [7] and diffusion-based approaches
such as label propagation[8]. Another popular approach is
optimizing a quality index such as modularity, and Louvain [9]
belongs to this category. These existing algorithms often fail to
detect communities and tend to produce a meaningless gigantic
community for the networks with high mixing. Also, we are
aware of the dynamical simplex evolution method [33] using
the attractive and repulsive forces to determine the position
of each vertex on a (N — 1)-dimensional space, where N
is the total number of vertices. However, as in Section V-C,
the layout on such a high-dimensional space for a large-scale
network is infeasible because of exponential computation cost.
The authors tested a very small network with only 128 vertices.
Song and Bressan [29] proposed an algorithm that combines a
conventional graph drawing algorithm (Fruchterman-Reingold)
and the k-means algorithm, but this baseline algorithm did
not handle large-scale networks or high mixing, as shown in
Section V-B.

B. Graph Drawing

Noack [5], [18] developed a general model for the force-
directed layout, as discussed in Section II, and proved that it
is closely related to community detection. Some special cases
are equivalent to normalized cut minimization or modularity
optimization. However, this theoretical study did not make a
practical impact on community detection since the connection
does not hold without the assumption that all vertices are
exactly placed on either of two positions. In addition, con-
ventional graph drawing models [16], [17], [5] do not provide
very high clustering tendency and thus cannot be directly used
for community detection. For example, in Figure 5, the LinLog
model [5] with a = 0 showed lower clustering tendency than
our model.

C. Spectral Clustering

Spectral clustering [19], [10] has a spirit similar to Black-
Hole in considering that vertices are mapped to points on a
space and then these points are grouped by a conventional
clustering algorithm. The main difference between them is
how to map vertices onto the space. Spectral clustering finds
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the top-n eigenvectors of the Laplacian matrix of a given
graph according to their eigenvalues. These eigenvectors form
the coordinates of vertices on the n-dimensional space. The
number of dimensions n is required to be as high as the number
of clusters to find, unlike our algorithm. Finding eigenvectors
is known to be computationally and memory intensive [1].
To resolve these drawbacks, several improvements based on
sparsification [10], sampling [20], and parallelization [19] have
been proposed recently. However, our experiments in Section
V-A reported unsatisfactory accuracy especially for large-scale
networks.

VII. CONCLUSION

In this paper, we proposed a novel community detection al-
gorithm, which we call BlackHole. Motivated by the common
nature between community detection and graph drawing, we
explored the possibility of applying the techniques of graph
drawing to community detection. Our new graph drawing
model tries to place the vertices of the same community
at a single position just like a black hole in space attracts
everything nearby. Then, these positions are easily grouped
by a conventional clustering algorithm. The lesson from graph
drawing is that we should take not only attractive forces and
but also repulsive forces into account. We theoretically proved
the superiority of our algorithm to representative embedding-
based algorithms and empirically verified our claims through
extensive experiments. The experiment results are very promis-
ing. Our algorithm is shown to achieve very high performance
regardless of the difficulty of community detection in terms
of the mixing parameter, the clustering coefficient, and so
on. If the community structure is not easily detectable, the
strength of our algorithm becomes indeed prominent since
other algorithms often fail to detect communities. Overall, we
believe that our work is a step toward unifying the two different
fields of social network analysis.
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APPENDIX
A. PROOF OF THEOREM 3

We assume that in an optimal layout all vertices in the
same community are mapped to the same position. Let d; ; be
the distance between the two positions for C; and C}.

(1) We calculate the optimal IS-divergence, using the objective
function of BlackHole, and obtain Eq. (13).
p(v)])

> (w) = p(0)| " ~

2 5 llp(u) —

2
. w
= Z (QOwci’cjdg,;m — TC lndi,j)

leferentlatlng Eq. (13) by d; ; and setting it to be 0, we have
dij = (\we,,c,/wg) . By substituting the value of d; ;
with it, the minimum IS- dlvergence is >, Drs(xullyw) =

2 2
e (1 “In ﬁ) 3. (A+Blnwe, ¢, ), where
A and B are constant with respect t0 we,,c;-

wuwv

13)

(2) We calculate the optimal KL-divergence with the same
substitutions as in Theorem 2 and obtain Eq. (14).

> zuw (nzu,w — nyu,w) = 2uw + Yu,v
u,v

7Zw11(2lnw“+ln)\71)+z (14)

—0.05
("”Ci-,cj nd; 20
@3

2
WG 4=0.05
N Gid

In the same manner, we obtain the minimum KL-
divergence > Drr(xXully.) = > ,wu(2lnw, +
In\) - i Wer,o; m(QAwe, o) /we) = c +

Zi j We;,C; (ln(wc/)‘)

In wc,i,cj), where C' is constant
with respect to we; ¢ -

after
and

In order to identify the effects of wc, c,’s,
excluding constant factors, we use Z iInwe, c;
> i Weh,o; (In(wg/A) — In(we, ¢,)) as the alternatives of
the optimal IS-divergence and KL-divergence. We now obtain

;S(gB(LbC) ?S (gReal) ;(L (gBuae) and D;(L (gReal) by
setting wc;, C; according to the definitions of Gp,se and Greqi-
In partlcular D ,S(gReal) and D}, L(GReal) are approx1mated
as Egs. (15) and (16) using the Taylor series expansions up to
order 2. Here, p denotes the total number of communities.

P 1 1 2
nwe o+ Xe — —5—X¢
2 we o 2w

c,c

2
P) wey
w In — Inw
(2 < C,C( N C,C)

1
+ (i —lmwo o — 1] Xe — x2
’ 2we. o

Finally, we obtain Eq. (17) since E[X,] = 0 and E[X?]
Var(Xe) + (E[Xc])? = o2.

E[D;S(gReal)D;(L(gBase) - D?S(gBase)D)Ik(L (gReal)]

- _g? In(vVwe,c/we) \ [(p ’
o € we,c 2

Eq. (17)< 0 if A > (we,c/we) ™2, where we o /we stands
for mixing. Thus, it is satisfied if we take A\ large enough.
In practice, we take this value as the sum of weights of
vertices for a given graph. Eq. (17) < 0 is equivalent to

(15)

x

Dis(SReal)

Q2

Dk (9Real)

2
wey

(16)

an

DR(D[S) < DR(DKL) In addition, DR(DKL) 7DR(D13)
should increase as Eq. (17) decreases, which does when o2 or
we,c/we increase. |



	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Jae-Gil Lee
	----------

