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Abstract.  Community detection in complex networks is a fundamental 
problem that has been extensively studied owing to its wide range of 
applications. However, because community detection methods typically rely 
on the relations between vertices in networks, they may fail to discover higher-
order graph substructures, called the network motifs. In this paper, we propose 
a novel embedding method for graph clustering that considers higher-order 
relationships involving multiple vertices. We show that our embedding method, 
which we call motif-based embedding, is more eective in detecting communities 
than existing graph embedding methods, spectral embedding and force-directed 
embedding, both theoretically and experimentally.
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1.  Introduction

In a highly networked society, large amounts of network data are being generated every-
day. The importance of massive network analysis is increasing rapidly. In particular, 
graph clustering, also known as community detection in networks, is one of the most 
well-established problems in network analysis [6, 12, 37]. It is a procedure of finding 
the community structure, with many edges joining vertices in the same community and 
relatively few edges joining vertices of dierent communities. Community detection has 
been applied to many domains such as biological networks, social networks, informa-
tion networks, and so on. Due to its large applicability, many graph clustering methods 
based on distinct principles have been proposed to identify hierarchical organization 
[34], overlapping community structure [24], multi-relational community structure [16], 
and so on.

As a methodology of graph clustering, we decided to use graph embedding, which 
is theoretically pleasing and has been widely used for this purpose [23, 25, 29]. It is 
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known that graph embedding finds a low-dimensional mapping that preserves the con-
nectivity structure of a given graph [39]. Using this property of embedding, cluster-
ing algorithms based on embedding detect clusters in a low-dimensional space. These 
approaches first map vertices of a given graph to points in a low-dimensional space and 
then group the points that are closer from each other into clusters. The best-known 
method in this category is spectral clustering [27, 40] using nonlinear dimensionality 
reduction. Nonlinear dimensionality reduction methods were developed originally for 
embedding vectorial data, but recently have also been extensively used for graph data 
[25]. However, it is known that these methods often fail to find good low-dimensional 
embeddings for graphs since the vertices with high degrees are crowded in the middle 
while those with low degrees are scattered in the output space [43]. On the other hand, 
in order to visualize graphs, force-directed embedding is being widely used [39]. It finds 
an equilibrium of vertex positions where there exist attractive forces between adjacent 
vertices and repulsive forces between every two vertices. This method can resolve the 
limitation of spectral clustering using degree-weighted repulsion so that the high-degree 
vertices can be placed separately. In this respect, we follow the framework of force-
directed embedding for graph clustering.

A notable trend in graph clustering is to consider higher-order graph substructures, 
called the network motifs or graphlets [1, 4, 5]. The order of a graph substructure is 
determined by the number of vertices required to express the substructure. Previous 
studies on graph clustering have mainly focused on considering pairwise relationships 
between vertices, i.e. second-order substructures. It is known that using higher-order 
relationships that involve multiple vertices can improve the understanding of the under-
lying graph structure [4, 5]. For instance, a triangle, which is a third-order relationship 
between vertices, is regarded as a fundamental substructure for understanding social 
networks [19] and their communities [35]. The motif-based weighting method can be used 
to reflect the eect of motifs on each pair of vertices [4, 5]. We illustrate the motif-based 
weighting method with an example in figure 1. The left graph is an original undirected 
graph with two clusters. Here, the weight between two vertices is defined as the sum of 
the number of edges and motifs in which the two vertices are contained together, where 
we set a triangle to be a motif of interest. With the resulting weights, the right graph 
more readily shows the community structure in the perspective of inter- and intra-
cluster weights. Hence, we adopt the motif-based weighting method. Putting together 
force-directed embedding and motif-based weighting, our method increases the attraction 
within motifs so that their positions are located in similar positions and grouped easily.

Some recent studies have started to pay attention to identify clusters using network 
motifs. For graph clustering without embedding, there have been several attempts to 
generalize the evaluation measures for graph clustering by defining inter- and intra-
cluster connections with respect to motifs rather than edges, e.g. the motif-based modu-
larity [1], the motif-based cut [17], and the motif-based conductance [4, 5]. For graph 
clustering with embedding, a tensor spectral clustering algorithm has been recently 
proposed, which can be applied to discover higher-order substructures of particular 
interest [4]. However, to the best of our knowledge, no previous work has addressed the 
problem of force-directed embedding with motifs.

In this paper, we incorporate motifs into force-directed embedding in support of 
graph clustering. In summary, the contributions of this paper are as follows.

http://dx.doi.org/10.1088/1742-5468/2016/12/123401
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	 1.	We generalize force-directed embedding for graph embedding that allows for 
modeling higher-order graph substructure.

	 2.	We formally prove the relationship between the proposed method and motif-
based cut. Also, we show that our method has an advantage for identifying 
highly-mixed clusters and is appropriate especially for bipartite graph clustering.

	 3.	We demonstrate, by extensive experiments, that the proposed method outper-
forms existing methods to find various substructures in graphs.

The rest of the paper is organized as follows. Section 2 reviews the existing embed-
ding methods. Section 3 presents our proposed embedding method based on higher-
order graph substructures and formalizes the superiority of the method. Section 4 shows 
experimental results on both synthetic and real-world networks. Finally, section 5 con-
cludes this study and describes directions for future work.

2. Graph embedding

In this section, we review two widely used graph embedding methods: spectral embedding 
and force-directed embedding. The graph embedding problem has received great atten-
tion because it represents the structures of graphs and conveys interesting graph proper-
ties using the resulting graph layouts. For a graph data set, graph embedding reveals 
important relationships in the data set and gives us the big picture without losing the 
majority of the information itself. Many algorithms for solving the problem have been 
proposed, and their variants have been applied for various purposes, including knowledge 
representation, management systems, communication networks, and so on [15].

2.1. Spectral embedding

Spectral clustering is one of the most widely-used clustering algorithms based on embed-
ding techniques [27, 38]. Spectral clustering maps vertices of a given graph to points on 
a k-dimensional space, and then these points are grouped by a conventional clustering 
algorithm to form k clusters. Let W be the adjacency matrix (or the anity matrix) 
of a graph, D be a n by n diagonal matrix where d wi j

n
i j1 ,= ∑ = , and n is the number of 

Figure 1.  Motivating example for motif-based weighting.

http://dx.doi.org/10.1088/1742-5468/2016/12/123401
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vertices in the graph. The embedding step, called spectral embedding, finds the top-k 
eigenvectors of the normalized Laplacian matrix L I D WD1 2 1 2/ /= − − −  of a given graph 
according to their eigenvalues. These eigenvectors form the coordinates of vertices on 
the k-dimensional space. Any conventional clustering algorithm, such as the k-means 
algorithm, can be performed on the points obtained by embedding to find the commu-
nities of the original vertices.

The basis of spectral clustering is as follows. When graph clustering produces a 
collection of k disjoint cliques, the normalized Laplacian is a block-diagonal matrix 
that has zero eigenvalues with multiplicity k, and the corresponding eigenvectors are 
the indicator vectors of membership in the corresponding clusters. Spectral cluster-
ing computes k eigenvectors with smallest eigenvalues of the normalized Laplacian 
and then detects clusters based on the representation of a given graph in the corre
sponding eigenspace as the output space of embedding. In addition, it is known that 
this approach is a spectral relaxation of the minimization of the normalized cut [38]. In 
this respect, spectral embedding is regarded as a typical embedding method for cluster-
ing based on graph embedding.

Because of the high complexity of eigenvalue decomposition, it is not easy to apply 
spectral clustering on large-scale graphs. To resolve this scalability issue, several 
approximate algorithms have been proposed, and a parallel algorithm with sparsifying 
the adjacency or similarity matrix of a given graph has recently been proposed [8]. This 
approach can exhibit nearly linear speedups with the number of processors.

2.2. Force-directed embedding

Force-directed embedding is a popular method for graph drawing, which produces an 
embedding that typically conforms to some aesthetic criteria. It has received much 
attention because of its simplicity and intuitiveness for mapping general graphs [39]. 
Usually, force-directed graph embedding is designed for visualizing the general struc-
ture of graphs, but recently it is also used for representing the community structure 
of graphs [23, 28, 29]. Given an undirected and unweighted graph V E,( )=G , let 
p V S: →  be a function that maps from a set of vertices to a set of corresponding ver-
tex positions in a low-dimensional space S, e.g. S 2= R  or S 3= R . The force-directed 
embedding methods regard that two types of forces are exerted on a given graph: (1) 
attractive forces between every two adjacent vertices and (2) repulsive forces between 
every two vertices.

	 (1)	Attractive force: For a function p and two vertices i and j, the attractive force 
exerted on i by j exists. The attractive force is usually modeled by spring forces. 

It is expressed by w p i p i p i p j ,i j
a

, ∥ ( ) ( )∥ ( ) ( )−
 →

 where wi,j is a weight of an edge {i, j} 

and p i p j( ) ( )
 →

 is a vector pointing from p(i ) to p( j ). Its magnitude is proportional 

to the distance between two vertex positions when a  =  1.
	 (2)	Repulsive force: For a function p and two vertices i and j, the repulsive force 

exerted on i by j exists. The repulsive force is usually modeled by the forces between 

electrically charged particles. It is expressed by ∥ ( ) ( )∥ ( ) ( )−
 →

w w p i p j p j p ii j
r , where 

wi is a weight of a vertex i. Its magnitude is inversely proportional to the distance 
between positions if r  =  −1.

http://dx.doi.org/10.1088/1742-5468/2016/12/123401
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In this framework, each vertex is regarded as a particle and an edge joining two 
vertices is modeled by a spring connecting two particles. Then, the force-directed algo-
rithm is designed to find an equilibrium between attractive and repulsive forces. The 
problem is equivalent to minimizing the energy of the system corresponding to those 
forces. The energy E p( )|G  for the vertex positions { ( )} ∈p i i V for a graph V E,( )=G  is 
given by equation (1)

( ) ∥ ( ) ( ) ∥ ∥ ( ) ( ) ∥
{ } { } ( )
∑ ∑| =

+
− −

+
−

∈

+

∈

+GE p
w

a
p i p j

w w

r
p i p j

1 1
.

i j E

i j a

i j V

i j r

,

, 1

,

1

2
� (1)

Here, the energy is computed by the dierence of the sum of attractive energies for 
every two connected vertices and the sum of repulsive energies for every two vertices, 
where the derivatives of attractive and repulsive energies correspond to attractive and 
repulsive forces respectively. The problem is concerned with solving an optimization 
problem with an objective function in equation (1) over all possible values of p in a 
given space. Thus, the problem is to locate the positions of vertices that minimize the 
energy E p( )|G .

Among the force-directed embedding algorithms, LinLog (a  =  0,r  =  −1) [28, 29] is 
the state-of-the-art algorithm following the above energy minimization problem. When 

r  =  −1, we take p i p jln∥ ( ) ( )∥−  as the limit of p i p j r 1r 1∥ ( ) ( )∥ /( )− ++ . Although the 
conventional force-directed embedding algorithms [10, 13] use w 1i≡  for all vertices i, 
LinLog sets wi to be proportional to the degree of a vertex i, which is called degree-
weighted repulsion. With degree-weighted repulsion, LinLog produces a layout that is 
not biased against the high-degree vertices, thereby being appropriate for visualizing 
complex networks with power-law degree distributions.

The computational complexity of the energy minimization is V 2( )| |O , which is too 
high for dense graphs. Rather, we can use an approximation algorithm using the Barnes 
and Hut algorithm that reduces the running time to E V Vlog( )| | + | | | |O  [3]. In section 4, 
we implement force-directed embedding algorithms using the approximation technique.

3. Motif-based embedding

In this section, we propose a new embedding method for graph clustering based on the 
motifs of graphs. We generalize a classical graph embedding, the force-directed graph 
embedding, to incorporate the substructures of graphs using motifs. First, we present our 
proposed graph embedding method, which uses motif-based weighting. Then, we analyze 
our method by considering the connections between ours and well-known evaluation 
measures or properties of graph clustering. We also introduce several applications that 
benefit from wedge-based embedding, which is a special form of motif-based embedding.

3.1. Algorithm

The proposed algorithm for graph embedding is a generalization of force-directed graph 
embedding using motif-based weighting. First, we introduce the motif-based weight-
ing method for reflecting motif substructures in a given graph. For a (set of) specific 
type(s) of motifs, we count the numbers of motifs containing two vertices for every 

http://dx.doi.org/10.1088/1742-5468/2016/12/123401
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two vertices. For instance, the third-order substructures in graphs, such as a triangle 
(a clique of size 3) and a wedge (a path of length 2), can be regarded as motifs. As an 
example in figure 2, we regard a wedge between two vertices as a motif, and then count 
the number of common neighbors mi,j between i and j for every pair of vertices. We 
define the function f V V: →× R, e.g. f i j w m: , i j i j, ,{ } +� , where wi,j is the original 
weight between i and j, and mi,j is the number of motifs of interest between i and j. If 
the motif is a wedge, mi,j is formally represented by m w wi j k i k j k, , ,= ∑ . If the motif is a 
triangle, because a triangle is a closed wedge, mi,j is represented by m w w wi j k i j i k j k, , , ,= ∑ . 
One can use nonlinear or another type of function depending on the need of an applica-
tion in hand. In our experiments, a simple linear combination of edges and one type of 
motif are used for simplicity.

After the motif-based weighting, we find the layout to minimize the energy using the 
motif-based weights. In our force-directed embedding, we find the positions p v v V{ ( )} ∈  
that minimize equation (2). There are many embedding methods applicable to mini-
mize the equation [10, 13]

E p f i j p i p j w w p i p j, ln .
i j E i j V

i j

, , 2

( ) ( ) ∥ ( ) ( )∥ ∥ ( ) ( )∥
{ } { } ( )
∑ ∑| = − − −
∈ ∈

G
� (2)

In order to reduce the complexity, we can use the Barnes–Hut tree approximation to 
calculate vertex positions of graph embedding [23, 43], where the vertex positions in a 
region of the tree are processed together to reduce the number of calculations. Then, 
we apply our motif-based embedding method to graph clustering, in the same fashion 
as graph clustering with embedding. We can easily find the clusters in the embedding 
space using the k-means algorithm or other clustering algorithms with the vertex posi-
tions and then identify the corresponding clusters of vertices.

3.2. Analysis

We now show the eectiveness of the motif-based embedding for graph clustering in 
several ways. First, we prove that graph clustering with our motif-based embedding 
is equivalent to find the optimal clusters based on a measure for evaluating motif-
based clusters (section 3.2.1) and is able to find highly-mixed clusters, which are con-
sidered to be hard to detect (section 3.2.2). Also, we show that a type of motif-based 
weighting is a variant of the Jaccard similarity commonly used in graph clustering 
(section 3.2.3).

Figure 2.  Example of wedge-based weighting.

http://dx.doi.org/10.1088/1742-5468/2016/12/123401
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3.2.1. Connection with motif-based cut  We prove that graph clustering with motif-
based embedding solves a relaxation of normalized motif-based cut minimization 
problem. The motif-based cut, which has been used for graph clustering [17], is a 
generalization of graph cut that reflects the motifs across clusters. First, we define the 
motif-based cut and normalized motif-based cut as follows.

Definition 1 (Motif-based cut [17]).  Let V E,( )=G  be a connected graph and 
V V,1 2 be disjoint subsets of V. Then the motif-based cut between V1 and V2 is 

V V f i jmcut , ,i V j V1 2 ,1 2
( ) ( )= ∑ ∈ ∈ , where f V V: →× R is a function defined on a set of 

pairs of vertices. For instance, f i j w m: , i j i j, ,{ } +� , where wi,j is the weight from the 
original graph and mi,j is the number of motifs that i and j are contained together.

Definition 2 (Normalized motif-based cut).  Let V E,( )=G  be a connected graph and 
V V,1 2 be disjoint subsets of V. Then the normalized motif-based cut between V1 and V2 

is V Vnmcut ,
V V

V V1 2
mcut ,

deg deg

1 2

1 2
( ) ( )

( ) ( )
= , where Vdeg i( ) is the sum of degrees of vertices belonging 

to Vi, for i  =  1, 2.

To simplify theoretical derivation, we assume that the vertices in the same cluster 
map to the same position and the distance between two positions for V1 and V2 in the 
equilibrium of attractive and repulsive forces is maximized. In theorem 1, we prove that 
the best cut using our motif-based embedding is obtained when the normalized motif-
based cut is minimized.

Theorem 1.  Let V E,( )=G  be a connected graph and V V,1 2( ) be a bipartition of V. 
Then the distance between two positions is V V1 nmcut ,1 2/ ( ) if there are two possible vertex 
positions.

Proof.  Let d be the distance between two possible positions obtained by the energy 
minimization problem with equation (2). Then we have equation (3)

p d V V V V dmcut , deg deg ln .1 2 1 2( ) ( ) ( ) ( )| = −E G� (3)

Dierentiating equation (3) with respect to d and setting to zero, we obtain a condition for 
an equilibrium, V V V V dmcut , deg deg 01 2 1 2( ) ( ) ( )/− = . Therefore, d V V1 nmcut ,1 2/ ( )= .� □

3.2.2. Robustness of motif-based embedding  Here, we discuss that our proposed 
algorithm is more robust to highly-mixed community structure. Clustering with the 
embedding identifies clusters that are hard to detect. To define the hardness of graph 
clustering, we introduce the notion of the mixing defined as below.

Definition 3 (Mixing for a vertex).  Mixing for a vertex is the ratio between the ex-
ternal degree of the vertex with respect to its cluster and the total degree of the vertex.

Definition 4 (Mixing).  Mixing is the fraction of inter-cluster edges defined by the 
average mixing of vertices.

The hardness of graph clustering is now formalized as follows. Let ki
in and ki

out be 
the internal and external degree of vertex i with respect to its cluster c and kc

in and kc
out 

be the sum of internal and external degrees of vertices in c. Also, let p k ki cout
out out/=  and 

p k ki cin
in in/= . Graph clustering becomes feasible when p pin out> , which means that the 

http://dx.doi.org/10.1088/1742-5468/2016/12/123401
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linking probability inside a community is larger than that between dierent communi-
ties. This condition is a normalized version of the weak community [30], which defines 
a community as a set of vertices such that the sum of their internal degrees exceeds 

the sum of their external degrees. This condition is equivalent to 
N n

N
cµ< −
 if we assume 

that μ is the same for all vertices [20], where N is the number of vertices in the graph 
and nc is the number of vertices in a cluster c.

In theorem 2, we prove that if we transform a graph to a weighted graph with motif-
based weighting then p pin out>  holds if nc  <  N/2. The condition nc  <  N/2 is satisfied 
in most cases since the size of a cluster is usually smaller than the half of the graph. 
The theorem shows that the intra-community weights are usually larger than the inter-
community weights using motif-based weighting and we conclude that the motif-based 
weighting method is appropriate for detecting the community structure in graphs.

Theorem 2.  We assume that μ is the same for all vertices and nc  <  N/2. Then, p pin out>  
for f (i, j )  =  mi,j, where { { } { } }= | | ∈ ∈ |m k i k E j k E, , ,i j,  uses wedge-based weighting.

Proof.  As in [20], we approximate that k n kc c
in ⟨ ⟩∼  and k N n kc c

out ( )⟨ ⟩∼ − , where k⟨ ⟩ is 
the average degree of the graph. Then, equations (4) and (5) hold

p
n k n N n k N n

n
,

c i c c i c

c
in

in 2 out 2( / ) ( )( /( ))
∼

+ − −
� (4)

p
N k n k N n

N n
.i c i c

c
out

in out( / )( /( ))
∼

−
−

� (5)

From equations  (4) and (5), we obtain that p pin out>  is equivalent to 

k k k k
N n

n i i
N

N n i i
in 2 out 2 in outc

c c
( ) ( ) ( )( )+ >−

−
. If we set A

N n

n
c

c
= −

, X ki
in= , and Y ki

out= , then the 

last equation is the same with AX Y A XY1 12 2 ( / )+ > + . By Chebyshev’s inequality, 

the lower bound for the left-hand side is AXY2  and AXY A XY2 1 1( / )> +  holds for 
all A  >  1 since AXY2  is increasing and (1  +  1/A)XY is decreasing with respect to A. 

Therefore, if 1
N n

n
c

c
>−

 or, equivalently, nc  <  N/2, then p pin out>  holds.� □

3.2.3. Connection with Jaccard similarity  For graph clustering problems, several 
weighting methods or similarity measures are used to perform clustering algorithms. 
Among them, the Jaccard similarity is one of most-widely used similarity metrics to 
capture information between vertices for the purpose of community detection [36]. 
We now demonstrate that the Jaccard similarity is related to wedge-based weights 

m k i k E j k E, , ,i j, { { } { } }= | | ∈ ∈ |. For regular graphs, the orders of the similarity values 
are the same in the two measures. That is, wedge-based similarity can be regarded as 
a variant of the Jaccard similarity that does not change the order.

Definition 5 (k-regular graph).  A graph is called a k-regular graph if the degrees of 
vertices are equal to k.
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Theorem 3.  For regular graphs, the wedge-based weights are increasing with respect to 
the Jaccard similarity.

Proof.  The Jaccard similarity between two vertices i and j is i j,
i j

i j
( ) ( ) ( )

( ) ( )
σ = |Γ ∩ Γ |

|Γ ∪ Γ |
,  

where i i j V i j E,( ) { } { { } }Γ = ∪ ∈ | ∈  is the neighborhood of i. For k-regular graphs, 

( ) ( ) ( ) ( )|Γ ∪ Γ | = −|Γ ∩ Γ |i j k i j2 . Also, it is obvious that m i ji j, ( ) ( )∼ |Γ ∩ Γ |. Therefore, 
i j,( )σ  is increasing with respect to mi,j and vice versa.� □

Counting the number of wedges is easier than exactly calculating the Jaccard simi-
larity, but it is still not fast for large graphs. We also discuss a sampling method 
for approximating the number of wedges and its usefulness for graph clustering in 
section 3.3.

3.3. Application to detecting bipartite community structure

There have been several community detection methods dedicated to bipartite net-
works [11, 44]. However, it is hard to support both bipartite and ordinary community 
structures using a unified framework, because the existence of an edge indicates that 
the two endpoints do not belong to the same cluster in bipartite networks, unlike in 
ordinary networks. Motif-based embedding can be a solution for this problem, as in 
figure 3. Using wedges we can induce an embedding for detecting bipartite community 
structure. In section 4, we empirically verify the superiority of our proposed algorithm 
for bipartite graphs in both synthetic and real-world graphs.

For a small graph, we are able to easily calculate m Ai j i j,
2

,[ ]=  for any i j≠ . Similarly, 
we can calculate the values for motifs of the forms of paths or cycles using matrix mul-
tiplication. However, in general, matrix multiplication is too slow for dense graphs. The 

computational complexity for the exact calculation of the number of wedges is ki i
2( )∑O  

since there are 
k

2
i( ) wedges centered at vertex i, where ki is the degree of i. Instead, we 

approximate the number of wedges using a wedge sampling method [18]. The sampling 
method first calculates the degree of each vertex and then chooses a uniform random 
pair of neighbors of each vertex to generate a wedge. The number of wedges to be 
sampled from a vertex depends on its degree. Kolda et al [18] derived an approximation 
ratio by which a sparsified graph obtained by the sampling method yields a good 

Figure 3.  Application for discovering bipartite graph structure.
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quality for approximating the clustering coecient, which is closely related to graph 
clustering. Using this method, we approximate the number of wedges in which two 
vertices are contained together as a multiple of the number in the sparsified graph by 
considering the sampling rate.

4. Experiments

We conducted a set of experiments with the proposed graph embedding method on 
various real-world social networks and synthetic networks. We evaluated the accuracy 
of the proposed embedding method for graph clustering and discussed its properties 
with a set of experiments. In total, six methods were compared with each other. (1) 
LinLog is based on force-directed embedding; (2) LinLog+motif is based on force-
directed embedding with motif-based weighting and is what we propose in this paper; 
(3) Spectral is based on spectral embedding; (4) Louvain, (5) Infomap, and (6) label 
propagation are widely recognized as the state-of-the-art methods [20, 23].

	 (1)	LinLog (based on force-directed embedding)

	 (2)	LinLog+motif (proposed method)

	 (3)	Spectral clustering (denoted as Spectral )

	 (4)	Louvain [6] (based on modularity optimization)

	 (5)	 Infomap [33] (based on information theory)

	 (6)	Label propagation [31] (denoted as LabelProp)

In order to check the performance of community detection, we applied the k-means 
clustering algorithm for each result of the embedding techniques (1)–(3).

4.1. Evaluation measures

In order to evaluate the accuracy of community detection algorithms, we used the 
Normalized Mutual Information (NMI) to compare the partition of the set of vertices 
obtained by the algorithm and the true partition of a given graph [9]. It is a measure of 
similarity between the partitions, based on information theory. That is, if the ground-
truth community structure is known, this measure naturally evaluates the quality of 
community detection. It ranges from 0 (disagreement) to 1 (agreement) by normaliza-
tion, and a higher value represents a better quality of community detection. To obtain 
reliable results, we repeated each test 30 times and reported the average result.

4.2. Network data sets

4.2.1. Real-world networks.  The real-world network data sets used for experiments are 
summarized in table 1. (a) Football represents the matches played between U.S. college 
football teams in the year 2000, where the vertices are grouped to communities accord-
ing to conferences. (b) Twitter is a social network among Irish politicians and political 
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organizations, where two politician vertices are adjacent if there is a mention between 
them, and the vertices are assigned to communities according to their political aliation. 
(c) Polblogs is a network of political blogs around the U.S. election in the year 2004, 
where two vertices are adjacent if there is a citation between them, and the vertices are 
grouped by political alignment. (d) jdk is a software dependency network, where each ver-
tex represents a class, and an edge between two vertices indicates a dependency between 
them. (e) Adjnoun is a network of common adjective and noun adjacencies for the novel 
‘David Copperfield’, where an edge exists if the words occur in adjacent positions; since 
most edges occur between adjectives and nouns, the network is approximately bipartite. 
(f) Malaria is a bipartite network, where the vertices correspond to genes and their con-
stituent substrings, and each substring connects to every gene in which it is present. (g) 
Writers is a bipartite authorship network of writers and their articles in DBpedia. We 
downloaded networks (a), (c) and (e) from the Web, network (b) from [14], network (d) 
from [41], network (f) from [22], and network (g) from [2]. Note that we used the largest 
connected components of networks (b) and (g), since they are not connected.

We categorized these networks into three types: networks with dense triangles, 
(near-) bipartite structure, and no special substructure. Their types were determined by 
the values of FMe, FMw, and FMt, being respectively the fractions of edges, wedges, and 
triangles that are connected within the same community. Note that 1  −  FMe is based on 
the concept of mixing, and the other two measures are the generalizations of mixing for 
motifs. That is, we considered that the characteristic of the community structure of a 
network is determined by these key local properties. Like many social and information 
networks which contain many triangles, FMt is large for (a) Football and (b) Twitter, 
where a triangle is appropriate for the motif. For (e) near-bipartite and (f)–(g) bipartite 
networks, FMw is large, and the a wedge is appropriate for the motif. However, in (c) 
Polblogs and (d) jdk, FMe is large, and it seems that there is no special motif substruc-
ture; in this case, our motif-based embedding was not shown to be so eective.

The most important task is to determine the appropriate motif substructure before 
doing community detection. For this purpose, we suggest a simple heuristic to determine 
the motif substructure without knowing the ground-truth community structure. Recall 

Table 1.  Real-world networks for experiments.

Name # Nodes # Links k FMe FMw FMt Type

(a) Football 115 613 12 0.643  
(394/613)

0.547  
(3261/5967)

0.851  
(2067/2430)

Dense  
triangles

(b) Twitter 343 4831 7 0.634  
(3061/4831)

0.459  
(115K/251K)

0.696  
(58.6K/84.2K)

Dense  
triangles

(c) Polblogs 1224 16 715 2 0.741  
(12.4K/16.7K)

0.283  
(380K/1.34M)

0.720  
(218K/303K)

No special  
substructure

(d) jdk 6434 127 665 35 0.308  
(39.3K/128K)

0.205  
(101M/493M)

0.248  
(4.75M/19.1M)

No special  
substructure

(e) Adjnoun 112 425 2 0.280  
(119/425)

0.396  
(2152/5429)

0.169  
(144/852)

Near- 
bipartite

(f) Malaria 1103 2965 2 0 
(0/2965)

1  
(25.4K/25.4K)

N/A  
(none)

Bipartite

(g) Writers 74 775 98 895 2 0  
(0/74.8K)

1  
(1.03M/1.03M)

N/A  
(none)

Bipartite
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that calculating FMe, FMw, and FMt in table 1 requires the ground-truth community 
structure. For a given graph G, let w( )G  and t( )G  be the number of wedges and triangles, 
respectively, in G. We use these two measures to calculate the transitivity and intransi-
tivity of a graph in definitions 6 and 7. Transitivity measures the frequency of triangles 
(closed wedges), and intransitivity measures that of open wedges.

Definition 6 (Transitivity or global clustering coecient [26]).  For a given graph G, 
the transitivity of G is defined by P t wt ( )/ ( )( ) = G GG .

Definition 7 (Normalized intransitivity [7]).  For a given graph G, the intransi-

tivity of G is defined by P1 t
( )− G . In addition, the normalized intransitivity of G is 

P P k1w t( )/⟨ ⟩( ) ( )= −G G .

Table 2 shows the values of the transitivity (Pt
( )G ) and intransitivity (Pw

( )G ) of the 

networks. When Pt
( )G  is relatively high, e.g.  >0.3, the appropriate motif is a triangle, as 

in (a) Football and (b) Twitter. When Pw
( )G  is relatively high, e.g.  >0.1, the appropriate 

motif is a wedge, as in (e) Adjnoun, (f) Malaria, and (g) Writers. However, if none of 
the values is high, there is no special substructure, as in (c) Polblogs and (d) jdk.

4.2.2.  Synthetic networks.  For synthetic networks, we used the LFR benchmark net-
works [21] which incorporate some important properties found in real-world networks. 
This allows us to generate a set of graphs with community structure by varying the 
parameters of the model, including the number of vertices (n), the average degree ( k⟨ ⟩), 
the maximum degree (maxK), the mixing parameters μ (definition 4), the average and 
maximum sizes of communities, and so on. We generated the networks that have 10 000 
and 50 000 vertices and varied the other parameters. Specifically, we set k 20⟨ ⟩ =  and 
maxK  =  50 when n 10 000=  and k 100⟨ ⟩ =  and maxK  =  250 when n 50 000= . The mix-
ing parameter μ is varied from 0.10 to 0.75 by 0.05.

Table 2.  Heuristic for determining the motif substructure.

Name ( )GPt
( )GPw True Substructure

(a) Football 0.407 0.056 Dense triangles
(b) Twitter 0.335 0.024 Dense triangles
(c) Polblogs 0.226 0.028 No special substructure
(d) jdk 0.039 0.024 No special substructure
(e) Adjnoun 0.157 0.111 Near-bipartite
(f) Malaria 0 0.186 Bipartite
(g) Writers 0 0.378 Bipartite

Table 3.  Accuracy for real-world networks (NMI).

Name LinLog LinLog+motif Spectral Louvain Infomap LabelProp

(a) Football 0.912 0.002± 0.927  ± 0.002 ±0.751 0.044 ±0.855 0.0000 0.905 0.004± ±0.895 0.023
(b) Twitter ±0.826 0.003 0.832  ±  0.002 ±0.538 0.042 ±0.792 0.0000 ±0.817 0.0000 0.278 0.264±
(c) Polblogs 0.413  ±  0.010 0.397 0.007± 0.393 0.020± 0.365 0.0000± 0.288 0.004± ±0.373 0.052
(d) jdk 0.441 0.005± 0.461  ±  0.007 ±0.172 0.009 0.329 0.0000± 0.349 0.004± ±0.102 0.052
(e) Adjnoun 0.001 0.0000± 0.250  ±  0.027 ±0.004 0.0000 ±0.002 0.0000 ±0.003 0.0000 0 0.0000±
(f) Malaria 0.529 0.037± 1  ±  0.0000 ±0.006 0.0000 0.007 0.0000± ±0.008 0.0000 ±0.008 0.001
(g) Writers ±0.018 0.004 1  ±  0.0000 ±0.007 0.0000 0.015 0.0000± 0.017 0.001± ±0.018 0.005

http://dx.doi.org/10.1088/1742-5468/2016/12/123401


Motif-based embedding for graph clustering

14doi:10.1088/1742-5468/2016/12/123401

J. S
tat. M

ech. (2016) 123401

4.3. Results for real-world networks

Table 3 shows the NMI values for each pair of a network data set and an algorithm. 
The standard deviation is presented under the NMI value. Overall, LinLog is better 
than or comparable to Spectral or the state-of-the-art methods (Louvain, Infomap, and 
LabelProp), and LinLog+motif further increases the accuracy (except for Polblogs, 
which we will discuss below).

In addition, the statistical significance between the proposed method (LinLog+motif) 
and each of the others was tested using the two sample Student’s t-test. The results 
are summarized in table 4, where the p-values are presented. For all networks except 
Polblogs, the NMI values of the proposed method were significantly dierent from 
those of the others. More specifically, the increase from the others including LinLog to 
LinLog+motif was statistically significant at the significance level of 0.00001. Because 
Polblogs has no special motif structure, as shown by tables  1 and 2, the dierence 
between LinLog+motif and LinLog was less significant in Polblogs than in the other 
networks.

In table 5, we separately evaluated the eects of the two main components of the 
proposed method: (i) force-directed embedding and (ii) motif-based weighting. The 
former is the dierence between the NMI value of LinLog+motif and the average NMI 
value of the four existing methods (Spectral, Louvain, Infomap, and LabelProp). The 
latter is the dierence between the NMI value of LinLog+motif and that of LinLog. 
The eects of each component vary depending on the characteristics of the network 
under consideration. In general, the gains of motif-based weighting become higher in 
bipartite networks, because a wedge in bipartite networks contains the vertices within 
the same community whereas an edge does not.

Table 4. T-test results for real-world networks.

Name LinLog Spectral Louvain Infomap LabelProp

(a) Football 0.0000 0.0000 0.0000 0.0000 0.0000
(b) Twitter 0.0000 0.0000 0.0000 0.0000 0.0000
(c) Polblogs 0.0007 0.3732 0.0000 0.0000 0.0177
(d) jdk 0.0000 0.0000 0.0000 0.0000 0.0000
(e) Adjnoun 0.0000 0.0000 0.0000 0.0000 0.0000
(f) Malaria 0.0000 0.0000 0.0000 0.0000 0.0000
(g) Writers 0.0000 0.0000 0.0000 0.0000 0.0000

Note: All except spectral on polblogs are signicant at the level of 0.05, and most are 
signicant at the level of machine precision.

Table 5.  Gains of each component in motif-based embedding (NMI).

Name
Force-directed  
embedding

Motif-based 
weighting Overall

(a) Football 0.061 0.015 0.076
(b) Twitter 0.220 0.006 0.226
(c) Polblogs 0.058 −0.016 0.042
(d) jdk 0.203 0.020 0.223
(e) Adjnoun −0.001 0.249 0.248
(f) Malaria 0.522 0.471 0.993
(g) Writers 0.004 0.982 0.986
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According to the categorization of the networks in table 1, we discuss why motif-
based embedding enhances the accuracy of graph clustering or not. The findings from 
the experiments on real-world networks are summarized as follows.

	 (i)	Dense triangles within community (Football and Twitter): The motif-based 
weighting is very eective for the case of dense triangles within the same com-
munity. Figure 4 visualizes graph embedding of each algorithm. For visualizing 
the embedding of Spectral in the 2-dimensional space, we used the two principal 
directions obtained by eigen-decomposition of a normalized Laplacian matrix, 
while we used the k-dimensional space with the ground-truth k  =  12 for clustering. 
Compared to the existing embedding methods (LinLog and Spectral), the vertex 
positions determined by motif-based embedding (LinLog+motif) are more con-
centrated around each subregion, which corresponds to each community. When 
comparing between LinLog+motif and LinLog, since the detectability becomes 
higher, the NMI values increase by virtue of using the motif-based weighting 
method. The accuracy of Louvain, Infomap, and LabelProp was shown to be 
competitive but still lower than that of LinLog+motif.

	 (ii)	No special substructure (Polblogs and jdk): LinLog and LinLog+motif show similar 
accuracy. The proposed algorithm is more eective if a motif substructure is 
prevalent in a given graph. In practice, we know that the type of a network we 
want to analyze and patterns of interest according to the purpose of analysis. It is 
important to use an appropriate model for analyzing graph structure even if the 
model is not so complex. If the motif substructure is not prevalent, using motifs 
does not help improve the quality of community detection as in this case. The 
accuracy of Louvain, Infomap, and LabelProp was shown to be acceptable but 
lower than that of LinLog+motif.

	 (iii)	Bipartite graphs (Adjnoun, Malaria and Writers): Using conventional graph clus-
tering algorithms, identifying bipartite graph structure is very hard since the 
meaning of an edge in bipartite graphs is opposite to that of an edge in general 
graphs. However, wedge-based embedding enables us to model an existence of 
strong attraction between vertices in the same community. For (e) Adjnoun, 
LinLog+motif shows the best performance, but its accuracy is not so high owing 
to the complex structure of the graph. For (f) Malaria and (g) Writers, the 
network has a fully bipartite structure, and wedge-based embedding successfully 

Figure 4.  Embedding results of each algorithm for the football network. (a) 
LinLog. (b) LinLog+motif. (c) Spectral.
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detected two communities. Without motif-based weighting, the accuracy was 
low in LinLog, Spectral, Louvain, Infomap, and LabelProp. However, just using 
the wedge-based weighting, LinLog+motif turned out to be an very eective 
method.

4.4. Results for synthetic networks

Figure 5 shows the NMI values of the six methods for the LFR networks. The error 
bars were added using the standard deviation. For the LFR networks, we confirmed 
that all six methods succeed to detect communities well for small μ values. Previous 
studies discussed that the transition between undetectable and detectable region begins 
somewhere between 0.4µ =  and 0.5µ =  [32, 42]. Here, we concentrate on the range of 
μ from 0.30 to 0.75, which includes a hardly detectable region for community structure.

In figure 5, the accuracy of LinLog+motif is almost always highest among the six 
methods. As in table 5, the eect of force-directed embedding is measured by the gap 
between LinLog+motif and the other methods, and that of motif-based weighting is 
measured by the gap between LinLog+motif and LinLog. The gain by force-directed 
embedding increased as the mixing  (μ) became higher [23], because the accuracy of 
LinLog degraded less rapidly than those of Spectral, Louvain, Infomap, and LabelProp. 
We used the motif-based weighting method that the sum of the indicator of an edge 
and the number of triangles that two end points are contained together. Though the 
eect of motif-based (i.e. triangles) weighting is not so significant, the motif-based 
embedding always wins against the original embedding of LinLog. The gap between 
LinLog  +  motif and LinLog was kept around 0.1 for high mixing, i.e. when 0.6⩾µ . 
Please note that we did not assume any motif substructure without edges controlled 
by the parameters of LFR networks. We checked that, as μ increased, the ratio of 
the average distance between vertices within the same triangle to that between two 

Figure 5.  Quality of community detection on synthetic networks.
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adjacent vertices increased more rapidly in the original force-directed embedding than 
in the motif-based embedding. Specifically, the value increased from 0.13 to 0.77 when 
μ was varied from 0.30 to 0.75 for LinLog, but the value increased from 0.08 to 0.68 
for LinLog+motif. That is, the motif-based embedding locates triangles more closely 
on the embedding space, and it is useful when there is a tendency that triadic closure 
occurs within the same community. When such a case happens in networks, our pro-
posed approach will be more powerful.

5. Conclusions

In this paper, we proposed a motif-based embedding method for graph clustering by 
modeling higher-order relationships among vertices in a graph. Our embedding method 
considers degree-weighted repulsive forces and motif-based attractive forces to enhance 
the clustering tendency of points in the output space of graph embedding. The relation-
ship with graph clustering was proven theoretically, and the performance and appli-
cability were verified through extensive experiments. In particular, we checked the 
superiority of using triangle- and wedge- based embedding for identifying community 
structure corresponding to such substructures of interest. One can use other motif 
structures to implement the algorithm, but it is very important to understand and use 
the proper motif structure in networks.
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