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ABSTRACT
The escalating crisis of COVID-19 has put people all over the world

in danger. Owing to the high contagion rate of the virus, COVID-19

cases continue to increase globally. To further suppress the threat of

the COVID-19 pandemic and minimize its damage, it is imperative

that each country monitors inbound travelers. Moreover, given that

resources for quarantine are often limited, they must be carefully

allocated. In this paper, to aid in such allocation by predicting the

number of inbound COVID-19 cases, we propose Hi-COVIDNet,

which takes advantage of the geographic hierarchy. Hi-COVIDNet

is based on a neural network with two-level components, namely,

country-level and continent-level encoders, which understand the

complex relationships among foreign countries and derive their re-

spective contagion risk to the destination country. An in-depth case

study in South Korea with real-world COVID-19 datasets confirmed

the effectiveness and practicality of Hi-COVIDNet.
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1 INTRODUCTION
World Health Organization (WHO) declared the COVID-19 out-

break a “pandemic” on March 11, 2020 [18]. The threat of the
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COVID-19 pandemic continues to increase worldwide through

physical contact between people, thereby putting people in great

danger. Owing to the high contagion rate of the disease, inbound

infected patients might lead to a destructive pandemic, eventually

paralyzing an entire country. To address this, most governments

impose quarantines to monitor overseas inflow and prevent this

infectious disease from entering across countries. Typically, epi-

demics come from abroad. The objective must be to allow a flow of

uninfected travelers to avoid stopping economic activity.

South Korea’s COVID-19 control and prevention measures, re-

ferred to as “K-Quarantine,” received global praise. Regarding the

control of overseas entrants, which is effective from April 1, 2020,

all symptomatic entrants from abroad go through diagnostic tests

at the airport. Those who test positive are transferred to a hospital

or a community treatment center. The asymptomatic passengers

(those who did not show symptoms of the disease) receive diagnos-

tic tests at the airport if they come from Europe, and short-term

foreigners are quarantined at government facilities. To operate this

special entry procedure, the government must allocate resources,

such as medical staff, diagnostic kits, and quarantine facilities, in

advance, and then adjust the procedure to a potential new situation

rapidly. Thus, it is very useful to precisely predict the number and

trend of imported cases accurately.

In this paper, we focus on predicting the number of imported

cases as precisely as possible for the near future (i.e., one or two

weeks). The potential number of imported cases from a country

can be represented as a function of inbound passengers arriving

from that country and its respective degree of infection risk. Intu-

itively speaking, the number of imported cases from a country is

proportional to the number of inbound passengers arriving from

that country and the number of confirmed cases. However, the

underlying relationship inside the function is too complex for sim-

plification given that various factors change over time. For instance,

a rapid spread of the disease within a country increases the pan-

demic risk of other countries immediately, while it also decreases

inter-country interactions that are proportional to the infection

risk. Simultaneously, a country tends to interact with nearby coun-

tries in the same continent more often than distant ones in other

continents. Therefore, it is imperative for a prediction model to

encompass such a complex, spatio-temporal relationship.

Following this intuition, we propose Hi-COVIDNet, a

Hierarchical model that estimates the inbound COVID-19 cases

from abroad based on the epidemic trend and inflection risk of

foreign countries, effectively exploiting the power of deep neural

Networks. To understand the innate nature of COVID-19, which

spreads not only quickly but also unnoticeably, Hi-COVIDNet

considers the temporal dependency of COVID-19 infections
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Figure 1: The predicted numbers for imported cases by Hi-
COVIDNet together with the true numbers in South Korea.

country-wise through a recurrent neural network, followed by the

incorporation of the risk factor and interaction information from

each country. Furthermore, Hi-COVIDNet reflects the hierarchy of

spatial contexts by aggregating foreign countries per continent.

Our main contributions are summarized as follows:

• We propose Hi-COVIDNet, to the best of our knowledge, the first

deep learning approach for estimating the upcoming number of

imported COVID-19 cases.

• We exploit the geographic hierarchy as well as a hierarchical ob-

jective function to overcome a relatively short (i.e., approximately

1.5 months) period of data collection for COVID-19.

• We demonstrate the practicality and effectiveness of Hi-

COVIDNet through a case study in South Korea. As an exam-

ple, after training Hi-COVIDNet with datasets collected from

March 22 through May 5, 2020, we predicted the number of im-

ported cases for the period fromMay 6 throughMay 19, 2020 (two

weeks). Figure 1 shows the prediction results together with the

true numbers of daily imported cases. Note that the prediction

results are very close to the true trend.

The rest of this paper is organized as follows. Section 2 sum-

marizes the datasets used for evaluation. Section 3 proposes the

architecture and methodology for Hi-COVIDNet. Section 4 presents

the evaluation results. Section 5 reviews relevant studies for predict-

ing the spread of epidemics. Finally, Section 6 concludes the paper.

2 DATA DESCRIPTION
In this section, we describe our large-scale data collection used to

train Hi-COVIDNet for a case study in South Korea. The collection

comprises intra-country and inter-country information. Table 1 sum-

marizes the description of each dataset. All datasets, except for the

roaming dataset, are publicly available on the Internet. They were

collected from March 22 through May 5, 2020, to align the period

with the information from Korea Centers for Disease Control and

Prevention (KCDC).

2.1 Intra-Country Datasets
• Confirmed Cases: This dataset was provided by Johns Hop-

kins COVID-19 Resource Center
1
. It represents the number of

daily confirmed cases and deaths per country. Additionally, we

included their first and second derivatives to obtain the degree

of COVID-19 infection speed per country.

• Search Keywords: This dataset was collected from Google

Search Trend for the four keywords in Table 1, which represent

the degree of the anxiety on the disease in each country.

1
https://coronavirus.jhu.edu/map.html

Table 1: Summary of the datasets.

Dataset Variable Description

I
n
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a
-
C
o
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n
t
r
y
D
a
t
a

Confirmed

Cases

(1) Date

(2) Country

(3) # of confirmed cases

(4) First derivative of (3)

(5) Second derivative of (3)

(6) # of deaths

(7) First derivative of (6)

(8) Second derivative of (6)

Search

Keywords

(1) Date

(2) Country

(3)–(6) # of searches for “COVID-19,”

“COVID test,” “Flu,” and “Mask”

I
n
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e
r
-
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u
n
t
r
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D
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International

Roaming

(1) Date

(2) Originating country

(3) Total # of customers arriving in Korea

Flights

(1) Date

(2) Originating country

(3) Total # of airlines arriving in Korea

Imported

Cases

(1) Date

(2) Originating continent

(3) Total # of imported cases in Korea

2.2 Inter-Country Datasets
• International Roaming: This dataset was provided by Korea

Telecom (KT)
2
, the second largest mobile carrier in South Korea.

It contains its Korean customers returning to and from South

Korea. We extracted the number of roaming entrants from each

country per day to estimate the total daily inflow. Over 30% of

Korean telecommunication users employ KT, which is sufficient

to estimate the total number of Korean travelers.

• Flights: This dataset was collected from the airline information

system
3
. It contains the number of daily cargo and passenger air-

lines arriving at Incheon Airport, the main international airport

in South Korea. It was used as a rough estimate of the number of

the entrants from abroad. Given that the roaming dataset covers

only Korean travelers, this flight dataset was used together with

the roaming dataset to cover all inbound travelers.

• Imported Cases: This dataset was collected by KCDC
4
. It con-

tains the daily count of imported cases to South Korea, which

are categorized by the originating continent. This daily count is

used as the label attribute for training and testing. See Appendix

A.1 for details.

3 METHODOLOGY: HI-COVIDNET
3.1 Overview
We propose a deep learning approach calledHi-COVIDNet that aims

to predict the imported COVID-19 cases from abroad by learning

the function of the degree of each country’s infection risk and the

amount of inbound passengers.

2
https://corp.kt.com/eng/

3
https://www.airport.kr/co/en/index.do

4
http://ncov.mohw.go.kr/en
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Figure 2: Two-level model architecture of Hi-COVIDNet.

Overall Architecture: Figure 2 depicts the two-level hierarchical
architecture of our Hi-COVIDNet model, which mainly consists of

the country-level encoder and the continent-level encoder:

1. Country-Level Encoder: This learns a hidden representation

of both the infection risk in each country and the inflow trend

from each country. The epidemic statistics (e.g., confirmed cases

and deaths) and search keywords are provided for the former,

and the roaming and flight statistics are provided for the latter.

Then, all these inputs are concatenated to model the function of

the two aspects.

2. Continent-Level Encoder: This aggregates the outputs of the
country-level encoders belonging to the same continent, in that

the spread of COVID-19 is greatly impacted by the neighbor-

ing countries. Thus, a hidden representation is generated per

continent, which reflects those of the belonging countries.

At last, the prediction layer of Hi-COVIDNet returns the number

of the imported COVID-19 cases to a destination country (i.e., South

Korea) for upcoming 𝑘 days, by combining the hidden representa-

tions of all continents and learning their respective contribution to

the final output.

The notation required for describing Figure 2 in subsequent

sections is summarized as follows
5
:

• 𝑋𝑖 (𝑡) represents the epidemic statistics in the 𝑖-th country at day

𝑡 . More specifically, 𝑋𝑖 (𝑡) consists of the variables for confirmed

cases and search keywords in Table 1, i.e., 𝑋𝑖 (𝑡) = [# of confirmed

cases, . . ., # of deaths, . . ., # of searches for “Mask”].
• 𝑋𝑖 (𝑡−𝑤+1:𝑡) is the series of the epidemic statistics in past𝑤 days

from day 𝑡 , where𝑤 is the incubation period of COVID-19. More

specifically, 𝑋𝑖 (𝑡−𝑤+1:𝑡) = ⟨𝑋𝑖 (𝑡−𝑤+1), . . . , 𝑋𝑖 (𝑡)⟩.
• 𝐴𝑖 (𝑡) represents the total inflow statistics from the 𝑖-th country

to a destination country at day 𝑡 . More specifically,𝐴𝑖 (𝑡) consists
of the variables for international roaming and flights in Table 1,

i.e., 𝐴𝑖 (𝑡) = [# of inbound customers, # of inbound airlines].

5
The variables for 𝑋𝑖 (𝑡 ) and𝐴𝑖 (𝑡 ) can easily adapt to the datasets in hand.

• 𝑦 (𝑡+1:𝑡+𝑘) is the series of the true numbers of daily imported

cases to a destination country from day 𝑡+1 through day 𝑡+𝑘 ,
and 𝑦 (𝑡+1:𝑡+𝑘) is the series of the predicted numbers for the

corresponding 𝑘 days.

• ℎ𝑀𝑜𝑑𝑢𝑙𝑒
𝑖

(·) is the latent variable produced by𝑀𝑜𝑑𝑢𝑙𝑒 for the 𝑖-th

country or continent.

3.2 Country-Level Encoder
The country-level encoder consists of the Transformer [27] layer,

the long short termmemory (LSTM) [8] layer, and concatenate layer.

Transformer Layer: This layer highlights the significant period
in 𝑋𝑖 (𝑡−𝑤+1:𝑡) through the attention mechanism [27]. This layer

is shown to be effective because a specific period can have a greater

impact on the COVID-19 transmissions (see §4.3). For example,

the 31st case in South Korea, discovered on February 18, 2020,

participated in a worship service of a quasi-Christian cult called

Shincheonji; since February 18, the number of confirmed cases

literally exploded [21]. Overall, this layer is formulated by

ℎ𝑇𝑀𝑖 (𝑡−𝑤+1:𝑡) = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝑋𝑖 (𝑡−𝑤+1:𝑡);Θ𝑇𝑀
𝑖 ), (1)

where Θ𝑇𝑀
𝑖

is the set of the parameters of the Transformer for the

𝑖-th country.

LSTM Layer: This layer intends to capture the temporal trend

of the COVID epidemic, with the important period highlighted

by the Transformer layer. The LSTM, a variant of recurrent neural

networks (RNNs), is chosen here because it has achieved the state-of-

the-art performance in various applications with sequence data [17].

To this end, we keep the output of the last (i.e., at day 𝑡 ) cell, which

summarizes the entire sequence, in the LSTM. Overall, this layer is

formulated by

ℎ𝐿𝑆𝑇𝑀𝑖 (𝑡) = 𝐿𝑆𝑇𝑀 (ℎ𝑇𝑀𝑖 (𝑡−𝑤+1:𝑡),Θ𝐿𝑆𝑇𝑀
𝑖 ), (2)

where Θ𝐿𝑆𝑇𝑀
𝑖

is the set of the parameters of the LSTM for the 𝑖-th

country. Accordingly, the output ℎ𝐿𝑆𝑇𝑀
𝑖

(𝑡) is the latent representa-
tion of the risk of infection in the 𝑖-th country at day 𝑡 .
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Concatenate Layer: This layer combines ℎ𝐿𝑆𝑇𝑀
𝑖

(𝑡), the output

of the LSTM layer in Eq. (2), and 𝐴𝑖 (𝑡). Recall that the former

represents the risk of infection in the 𝑖-th country and the latter

represents the total inflow from the 𝑖-th country to the destination

country. Overall, this layer is formulated by

ℎ
𝐶𝑜𝑢𝑛𝑡𝑟𝑦

𝑖
(𝑡) = 𝑐𝑜𝑛𝑐𝑎𝑡 ( [ℎ𝐿𝑆𝑇𝑀𝑖 (𝑡), 𝐴𝑖 (𝑡)]). (3)

Thus, the concatenated output ℎ
𝐶𝑜𝑢𝑛𝑡𝑟𝑦

𝑖
(𝑡) is the hidden represen-

tation of the impact on the imported cases from the 𝑖-th country.

3.3 Continent-Level Encoder
The continent-level encoder, together with the hierarchical objec-

tive function (see §3.4), simply reflects the First Law of Geography,

“everything is related to everything else, but near things are more

related than distant things.”

Encoder: This encoder consists of the concatenate layer and the

fully-connected layer. The concatenate layer simply merges the

outputs of the country encoders for the belonging countries in

each continent. Then, a fully-connected layer is added to learn the

relationship from the impact on the imported cases from the 𝑗-th

continent at day 𝑡 to the impact from the same continent during

upcoming 𝑘 days. Overall, this encoder is formulated by

ℎ𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡𝑗 (𝑡+1:𝑡+𝑘) = 𝜙 (𝑐𝑜𝑛𝑐𝑎𝑡 ( [. . . , ℎ𝐶𝑜𝑢𝑛𝑡𝑟𝑦
𝑖

(𝑡), . . .]);Θ𝜙

𝑗
), (4)

where𝜙 is a fully-connected network with one hidden layer
6
for the

𝑗-th continent and is parameterized byΘ
𝜙

𝑗
with the ReLU activation

function. Therefore, the output ℎ𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡
𝑗

(𝑡+1:𝑡+𝑘) returns the
expected impact of the imported cases for upcoming 𝑘 days.

Prediction Layer: Finally, to estimate the total number, we further

aggregate the outputs of the continent-level encoders by adding

another fully-connected layer, formulated as

𝑦 (𝑡+1:𝑡+𝑘) = 𝜓 ( [. . . , ℎ𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡𝑗 (𝑡+1:𝑡+𝑘), . . .];Θ𝜓 ), (5)

where Θ𝜓
is the set of the model parameters. The result 𝑦 (𝑡+1:𝑡+𝑘)

is the predicted number of imported COVID-19 cases for the up-

coming 𝑘 days from day 𝑡 .

3.4 Training Algorithm
Hierarchical Objective Function: To fully take advantage of the
geographic hierarchy, our loss function considers (i) the prediction

error on the number of the imported cases from each continent and

(ii) the prediction error on the total number of imported cases. We

follow the grouping of countries provided by KCDC and denote

the set of continents by C = { China, Asia outside China, Europe,

America, Africa, Oceania }. The mean squared error (MSE) is used

by default. As a result, the objective function is defined by

L =𝛽 ∥(𝑦C (𝑡+1:𝑡+𝑘) − 𝑦C (𝑡+1:𝑡+𝑘))∥22
+ (1 − 𝛽)∥(𝑦 (𝑡+1:𝑡+𝑘) − 𝑦 (𝑡+1:𝑡+𝑘))∥2

2
,

(6)

where 𝑦C (𝑡+1:𝑡+𝑘), 𝑦C (𝑡+1:𝑡+𝑘) ∈ R |C |×𝑘 denote the true and

predicted numbers of continent-wise imported cases for upcoming

6
Although this structure is well-known to approximate almost any continuous func-

tion [24], any other network structure such as a convolution neural network (CNN) [13]

can be used instead.

Algorithm 1 Hi-COVIDNet Training

Input: 𝑋𝑖 (𝑡), 𝐴𝑖 (𝑡), and 𝑦 (𝑡) (see §3.1); 𝑘 days to predict

Output: Set of the optimal model parameters Θ∗
1: Θ𝑇𝑀 ,Θ𝐿𝑆𝑇𝑀 ,Θ𝜙 ,Θ𝜓 ← Initialize model parameters;

2: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝑒𝑝𝑜𝑐ℎ𝑠 do
3: for each 𝑡 ∈ { training days } /* Mini-batch */

4: /* Country-Level Encoder */

5: for each 𝑖 ∈ { countries } do
6: Compute ℎ𝑇𝑀

𝑖
(𝑡) by Eq. (1);

7: Compute ℎ𝐿𝑆𝑇𝑀
𝑖

(𝑡) by Eq. (2);

8: Compute ℎ
𝐶𝑜𝑢𝑛𝑡𝑟𝑦

𝑖
(𝑡) by Eq. (3);

9: /* Continent-Level Encoder */

10: for each 𝑗 ∈ { continents } do
11: Compute ℎ𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡

𝑗
(𝑡+1:𝑡+𝑘) by Eq. (4);

12: /* Prediction Layer */

13: Estimate 𝑦 (𝑡+1:𝑡+𝑘) using Eq. (5);
14: /* Model Update */

15: Compute the loss L by Eq. (6);

16: Θ∗ ← Θ∗ − 𝛼∇L;
17: return Θ∗;

𝑘 days. 𝑦C = ℎ𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡C when the dimensionality of the hidden

variable is reduced to one. 𝛽 is the hyperparameter for adjusting

the weight of the continent-level error.

Pseudocode for Reproducibility: Since Hi-COVIDNet is an end-

to-end structure, we can optimize the entire model at once by

deriving the partial derivatives during the minimization of the

objective function in Eq. (6). The overall training procedure of Hi-

COVIDNet is outlined in Algorithm 1. The pseudocode follows the

presentation order in the previous sections. The forward propa-

gation is performed for the country-level encoder (Lines 4–8), the

continent-level encoder (Lines 9–11), and the prediction layer (Lines

12–13). Then, the hierarchical loss is calculated using the prediction

result, and the all network parameters are updated by backpropa-

gation (Lines 14–16). The training procedure stops when a given

number of epochs elapses.

4 EVALUATION
To validate the superiority of Hi-COVIDNet, we conducted a case

study to predict imported COVID-19 cases using real-world COVID-

19 datasets in South Korea. Our evaluation was designed to support

the followings: (i) Hi-COVIDNet provides more accurate predic-

tion than the baselines (see §4.2); (ii) the main components of Hi-

COVIDNet are indeed effective, and both data collections are helpful

for prediction (see §4.3).

4.1 Experimental Setting
4.1.1 Datasets and Metric. The details of the datasets are presented
in Section 2. We divided the entire period into the training set for

March 22–May 5, 2020 and the test set for May 6–May 19, 2020.

The window size 𝑤 was set to be 14 according to the generally-

known COVID-19 incubation period [30]. Note that our datasets

were collected for a relatively short period at the time of this writing,

compared with other datasets [5].
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Table 2: RMSE comparison with the baseline methods.

Method May 6–12 (𝑘=7) May 6–19 (𝑘=14)

ARIMA 0.4931 0.6243

LSTM𝑠𝑣 0.4600 0.4274

LSTM𝑚𝑣 0.5188 0.4621

Hi-COVIDNet 0.4373 0.4045

We measured the prediction error using the root mean square

error (RMSE) defined as

𝑅𝑀𝑆𝐸 =

√√√
1

𝑘

𝑘∑
𝑖=1

(
𝑦𝑖 (𝑡+1:𝑡+𝑘) − 𝑦𝑖 (𝑡+1:𝑡+𝑘)

)
2

, (7)

where 𝑦 (𝑡+1:𝑡+𝑘) and 𝑦 (𝑡+1:𝑡+𝑘) are the true and predicted num-

bers, respectively, of imported COVID-19 cases for the upcoming 𝑘

days from day 𝑡 .

4.1.2 Algorithms and Implementation. Because the trend of im-

ported cases is a kind of time-series, we compared Hi-COVIDNet

with two popular time-series prediction algorithms, namely, the

ARIMA [4] model and the LSTM [8] model. ARIMA only uses the

variable of the number of imported cases for training and prediction.

For the LSTM model, we used two variants: LSTM𝑠𝑣 uses the single

variable just like ARIMA, and LSTM𝑚𝑣 uses the multiple variables,

which are the same as those used by Hi-COVIDNet.

ARIMA was implemented with statsmodel
7
, while the two LSTM

variants and Hi-COVIDNet were implemented with PyTorch 1.2.0
8
.

We ran all deep learning algorithms using an NVIDIA Tesla V100

GPU. In support of reliable evaluation, we repeated every test five

times and reported the average. For reproducibility, we provide the

source code and the data collection (except for the roaming dataset)

at https://github.com/kaist-dmlab/Hi-COVIDNet.

4.1.3 Network & Training Configuration. We trained Hi-COVIDNet

using the Adam [10] optimizer with a constant learning rate of

0.03 and a batch size of 1. The only hyperparameter 𝛽 was set

to be 0.5, which was the best value found in a grid 𝛽 ∈ [0, 1].
For the compared algorithms, all hyperparameters were favorably

set to the best values obtained by a thorough grid search. In all

experiments, any regularization method (e.g., dropout [25], batch

normalization [9], and weight decay [11]) was not applied.

4.2 Overall Comparison
We predicted the number of the imported cases for the upcoming 7

and 14 days. Table 2 shows the RMSE of the four algorithms for two

prediction tasks. In addition, Figure 3 shows the prediction result

in terms of the number of imported cases. Note that a prediction

result is returned as a real number. Overall, Hi-COVIDNet achieved

the lowest RMSE regardless of the duration of prediction, as shown

in Table 2; and the predicted trend by Hi-COVIDNet followed the

true trend most closely, as shown in Figure 3. These results indeed

demonstrate the superiority and practicality of the hierarchical

architecture of Hi-COVIDNet.

The RMSE of ARIMA was comparable to that of LSTM𝑠𝑣 or

LSTM𝑚𝑣 when predicting upcoming 7 days, but ARIMA started

7
https://www.statsmodels.org/stable/index.html

8
https://pytorch.org/
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Figure 3: The predicted numbers for imported cases by Hi-
COVIDNet, ARIMA, and two LSTM variants together with
the true numbers in South Korea (best viewed in color). This
figure repeats Figure 1 with the additional results of the
three baselines.

to be governed by its own bias when predicting upcoming 14 days,

as shown in Figure 3. Thus, ARIMA was, in general, shown to be

the worst. Meanwhile, the RMSE of LSTM𝑚𝑣 was higher than that

of LSTM𝑠𝑣 despite more information, probably because naively

adding information may even harm the model performance [6]. In

addition, although exactly the same input was fed to Hi-COVIDNet

and LSTM𝑚𝑣 , the RMSE of Hi-COVIDNet was much lower than

that of LSTM𝑚𝑣 , thereby confirming again the advantage of our

architectural design.

Continent-Wise Result: By virtue of the two-level architecture,

Hi-COVIDNet is able to predict the number of imported cases per

continent, as shown in Figure 4. The prediction results for each

continent are interpreted as follows:

• America, Europe, and Asia outside China (Figure 4(a), Figure 4(b),

and Figure 4(c)): Hi-COVIDNet continuously predicted a number

of imported COVID-19 cases from these continents, because of

both a high number of confirmed cases and a high number of

inbound passengers. The ten countries with the highest number

of confirmed cases (i.e., U.S., Brazil, Russia, U.K., Spain, Italy,

France, Germany, India, and Turkey) are all from these continents

as of May 30, 2020.

• Africa (Figure 4(d)): Hi-COVIDNet expected no imported COVID-

19 cases because of a very low number of inbound passengers

from Africa, though there were a few imported cases.

• Oceania (Figure 4(e)): Hi-COVIDNet expected no imported

COVID-19 cases because new confirmed cases were very few in

Oceania. In fact, there were no imported cases.

• China (Figure 4(f)): Hi-COVIDNet expected no imported COVID-

19 cases because of very few inbound passengers from China.

The Chinese government put travel restrictions, and the Korean

government banned the entry from Wuhan. In fact, there were

no imported cases.

4.3 Ablation Study
The outstanding performance of Hi-COVIDNet comes from various

factors, including the hierarchical structure, the Transformer, and

rich input data. To examine their respective effect, we excluded

each of a few main components and additionally evaluated the

accuracy of these variants. Table 3 shows the RMSE result of the

Hi-COVIDNet variants.
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Figure 4: Predicted and true numbers for continent-wise imported cases in South Korea.

Table 3: Ablation study for the datasets and model compo-
nents of Hi-COVIDNet (𝑘=14).

Hi-COVIDNet Variant RMSE

Hi-COVIDNet (w/o inter-country data) 0.6086

Hi-COVIDNet (w/o continent-level encoder) 0.5800

Hi-COVIDNet (w/o Transformer) 0.4543

Hi-COVIDNet 0.4045

Effect of Inter-Country Data: “Hi-COVIDNet (w/o inter-country

data)” was not provided with the inter-country data (i.e., the roam-

ing and flight datasets in Table 1). That is,𝐴𝑖 (𝑡) and the concatenate
layer in Figure 2 were removed. Then, the RMSE was increased by

up to 50.4%, which empirically verified that the inter-country data

was effective to elicit the inflow trend.

Effect of Network Components: “Hi-COVIDNet (w/o continent-

level encoder)” did not include the continent-level encoder in Figure

2. The RMSE was increased by up to 43.3%, and the two-level archi-

tecture did have a remarkable impact on the accuracy. On the other

hand, “Hi-COVIDNet (w/o Transformer)” did not include the Trans-

former in the country-level encoder (see Figure 2). The RMSE was

again increased by up to 12.3%. Therefore, we confidently confirm

that Hi-COVIDNet contains essential components to understand

the epidemic risk.

5 RELATEDWORK
Owing to the urgency in ending the COVID-19 pandemic, numerous

studies have tried to predict the spread of COVID-19 by applying

various methods developed in the infectious disease and pandemic

research community. Recently, machine learning and deep learning

are actively exploited to enjoy their powerful performance proven

in other fields [15, 17].

5.1 Machine Learning Approach
As a traditionally important problem, Yang et al. [29] applied the

susceptible exposed infected resistant (SEIR) model to estimate the

epidemic curve of COVID-19. They utilized the data of severe acute

respiratory syndrome (SARS) since 2003 to train amodel and applied

it to predict the COVID-19 transmissions. For the same objective,

the ARIMAmodel [1] and mathematical modeling [12] were applied

to figure out the degree of COVID-19 transmissions.

Several studies employed popular machine learning techniques

instead of traditional statistical analysis. Hamer et al. [7] evaluated

statistical measures using a decision tree and a boosted decision

tree to predict the spatio-temporal epidemic spread and its risk.

Machando et al. [16] applied random forests [2] and other several

algorithms with the animal movements and spatial contexts to

expect the outbreak of porcine epidemic diarrhea virus (PEDV),

which is a kind of coronaviruses but only infectious to animals. Li et
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al. [14] estimated the number of confirmed cases around the world

with simple linear regression using the data published by WHO.

5.2 Recent Deep Learning Approach
The great success of deep learning in various applications also

attracted pandemic related research. Pal et al. [20] and Uhlig et

al. [26] exploited an artificial neural network to predict the spread of

COVID-19. Chimmula et al. [3] predicted the number of confirmed

cases and the end date of COVID-19 in Canada, Italy, and USA using

a LSTM. Punn et al. [23] estimated the numbers of diagnosed, dead,

and released cases and compared the accuracy obtained by various

models such as a DNN, a RNN, and a LSTM.

For infectious diseases other than COVID-19, Wu et al. [28] used

the RNN and CNN for epidemiological predictions; the RNN is

used to capture the long-term temporal correlation in the data, and

the CNN is used to fuse the information from different sources.

Mussumeci et al. [19], using multivariate time-series as predictors,

investigated the spatial effects on the spread of Dengue fever, and

the LSTM-based model was shown to achieve the lowest error

rate. For the interested reader, please refer to the survey article by

Philemon et al. [22] that reviews the neural network components

used for infectious disease prediction.

While previous studies mostly focused on predicting the epi-

demic trend itself, to the best of our knowledge, our work is the

first attempt to predict the trend of “imported cases,” which is really

useful for the quarantine at the border.

6 CONCLUSION
In this paper, we proposed a novel approach Hi-COVIDNet to ad-

dress the problem of predicting imported COVID-19 cases, which is

an urgent and significant issue to control the disease. Hi-COVIDNet

understands the temporal dependency of COVID-19 infections

country-wise as well as the interaction from each country, followed

by the incorporation of the geographic hierarchy per continent.

We showcased the practicality and effectiveness of Hi-COVIDNet

through a case study in South Korea. Hi-COVIDNet predicted the

upcoming number of imported COVID-19 cases much more pre-

cisely than the baselines. Overall, we believe that our work can

assist the governments in adjusting their special entry procedure

to a new situation rapidly. We are working closely with the Korean

government to put our work to practical use and are very interested

in applying Hi-COVIDNet to other countries.
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Figure 5: The trend of the imported COVID-19 cases in South Korea during the training period (best viewed in color). The
imported cases are counted for each continent.

A APPENDIX
A.1 Imported Cases in the Training Period
For the interested reader, in Figure 5, we show the statistics of

the imported cases to South Korea for the training period from

March 22 through May 5, 2020, which are provided by KCDC. Most

imported cases were from America and Europe, especially during

the early days (i.e., late March and early April) when COVID-19

started spreading rapidly all around the world. On the other hand,

there were consistently few imported cases from Oceania, China,

and Africa during the entire training period. The total number of

imported cases decreased after early April, because the number of

inbound passengers fromAmerica and Europe suddenly dropped by

the COVID-19 lockdown policy of the countries. Notably, capturing

this dynamic trend within a short period is very challenging, and

Hi-COVIDNet successfully demonstrated a potential for the task.
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